1,544 research outputs found

    Chandra Studies of the X-ray Point Source Luminosity Functions of M31

    Get PDF
    Three different M31 disk fields, spanning a range of stellar populations, were observed by Chandra. We report the X-ray point source luminosity function (LF) of each region, and the LF of M31's globular clusters, and compare these with each other and with the LF of the galaxy's bulge. To interpret the results we also consider tracers of the stellar population, such as OB associations and supernova remnants. We find differences in the LFs among the fields, but cannot definitively relate them to the stellar content of the fields. We find that stellar population information, average and maximum source luminosities, X-ray source densities, and slopes of the LF are useful in combination.Comment: 7 pages, 3 figures, accepted for publication in ApJ. Higher-resolution figures available on reques

    Generalizing the autonomous Kepler Ermakov system in a Riemannian space

    Full text link
    We generalize the two dimensional autonomous Hamiltonian Kepler Ermakov dynamical system to three dimensions using the sl(2,R) invariance of Noether symmetries and determine all three dimensional autonomous Hamiltonian Kepler Ermakov dynamical systems which are Liouville integrable via Noether symmetries. Subsequently we generalize the autonomous Kepler Ermakov system in a Riemannian space which admits a gradient homothetic vector by the requirements (a) that it admits a first integral (the Riemannian Ermakov invariant) and (b) it has sl(2,R) invariance. We consider both the non-Hamiltonian and the Hamiltonian systems. In each case we compute the Riemannian Ermakov invariant and the equations defining the dynamical system. We apply the results in General Relativity and determine the autonomous Hamiltonian Riemannian Kepler Ermakov system in the spatially flat Friedman Robertson Walker spacetime. We consider a locally rotational symmetric (LRS) spacetime of class A and discuss two cosmological models. The first cosmological model consists of a scalar field with exponential potential and a perfect fluid with a stiff equation of state. The second cosmological model is the f(R) modified gravity model of {\Lambda}_{bc}CDM. It is shown that in both applications the gravitational field equations reduce to those of the generalized autonomous Riemannian Kepler Ermakov dynamical system which is Liouville integrable via Noether integrals.Comment: Reference [25] update, 21 page

    Two-spinon dynamic structure factor of the one-dimensional S=1/2 Heisenberg antiferromagnet

    Get PDF
    The exact expression derived by Bougourzi, Couture, and Kacir for the 2-spinon contribution to the dynamic spin structure factor Szz(q,ω)S_{zz}(q,\omega) of he one-dimensional SS=1/2 Heisenberg antiferromagnet at T=0T=0 is evaluated for direct comparison with finite-chain transition rates (N≤28N\leq 28) and an approximate analytical result previously inferred from finite-NN data, sum rules, and Bethe-ansatz calculations. The 2-spinon excitations account for 72.89% of the total intensity in Szz(q,ω)S_{zz}(q,\omega). The singularity structure of the exact result is determined analytically and its spectral-weight distribution evaluated numerically over the entire range of the 2-spinon continuum. The leading singularities of the frequency-dependent spin autocorrelation function, static spin structure factor, and qq-dependent susceptibility are determined via sum rules.Comment: 6 pages (RevTex) and 5 figures (Postscript

    Overview of the Kepler Science Processing Pipeline

    Full text link
    The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.Comment: 8 pages, 3 figure

    Clinical outcome and prognostic factors for central neurocytoma: twenty year institutional experience

    Get PDF
    Central neurocytomas are uncommon intraventricular neoplasms whose optimal management remains controversial due to their rarity. We assessed outcomes for a historical cohort of neurocytoma patients and evaluated effects of tumor atypia, size, resection extent, and adjuvant radiotherapy. Progression-free survival (PFS) was measured by Kaplan-Meier and Cox proportional hazards methods. A total of 28 patients (15 males, 13 females) were treated between 1995 and 2014, with a median age at diagnosis of 26 years (range 5-61). Median follow-up was 62.2 months and 3 patients were lost to follow-up postoperatively. Thirteen patients experienced recurrent/progressive disease and 2-year PFS was 75% (95% CI 53-88%). Two-year PFS was 48% for MIB-1 labeling >4% versus 90% for ≤4% (HR 5.4, CI 2.2-27.8, p = 0.0026). Nine patients (32%) had gross total resections (GTR) and 19 (68%) had subtotal resections (STR). PFS for >80% resection was 83 versus 67% for ≤80% resection (HR 0.67, CI 0.23-2.0, p = 0.47). Three STR patients (16%) received adjuvant radiation which significantly improved overall PFS (p = 0.049). Estimated 5-year PFS was 67% for STR with radiotherapy versus 53% for STR without radiotherapy. Salvage therapy regimens were diverse and resulted in stable disease for 54% of patients and additional progression for 38 %. Two patients with neuropathology-confirmed atypical neurocytomas died at 4.3 and 113.4 months after initial surgery. For central neurocytomas, MIB-1 labeling index >4% is predictive of poorer outcome and our data suggest that adjuvant radiotherapy after STR may improve PFS. Most patients requiring salvage therapy will be stabilized and multiple modalities can be effectively utilized

    The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis

    Get PDF
    The spatial and temporal control of polarity is fundamental to the survival of all organisms. Cells define their polarity using highly conserved mechanisms that frequently rely upon the action of small GTPases, such as Ras and Cdc42. Schizosaccharomyces pombe is an ideal system with which to study the control of cell polarity since it grows from defined tips using Cdc42-mediated actin remodeling. Here we have investigated the importance of Ras1-GTPase activity for the coordination of polarized cell growth during fission yeast mating. Following pheromone stimulation, Ras1 regulates both a MAPK cascade and the activity of Cdc42 to enable uni-directional cell growth towards a potential mating partner. Like all GTPases, when bound to GTP, Ras1 adopts an active conformation returning to an inactive state upon GTP-hydrolysis, a process accelerated through interaction with negative regulators such as GAPs. Here we show that, at low levels of pheromone stimulation, loss of negative regulation of Ras1 increases signal transduction via the MAPK cascade. However, at the higher concentrations observed during mating, hyperactive Ras1 mutations promote cell death. We demonstrate that these cells die due to their failure to coordinate active Cdc42 into a single growth zone resulting in disorganized actin deposition and unsustainable elongation from multiple tips. These results provide a striking demonstration that the deactivation stage of Ras signaling is fundamentally important in modulating cell polarity
    • …
    corecore