704 research outputs found

    Biochem Soc Trans

    Get PDF
    Abnormal protein aggregation and intracellular or extracellular accumulation of misfolded and aggregated proteins are key events in the pathogenesis of different neurodegenerative diseases. Furthermore, endoplasmic reticulum stress and impairment of the ubiquitin-proteasome system probably contribute to neurodegeneration in these diseases. A characteristic feature of AD (Alzheimer's disease) is the abnormal accumulation of Abeta (amyloid beta-peptide) in the brain. Evidence shows that the AD-associated PS (presenilin) also forms aggregates under certain conditions and that another AD-associated protein, ubiquilin-1, controls protein aggregation and deposition of aggregated proteins. Here, we review the current knowledge of ubiquilin-1 and PS in protein aggregation and related events that potentially influence neurodegeneration

    CLU, CR1 and PICALM genes associate with Alzheimer's-related senile plaques

    Get PDF
    Introduction APOE is the strongest risk gene for sporadic Alzheimer's disease (AD) so far. Recent genome wide association studies found links for sporadic AD with CLU and CR1 involved in Aβ clearance, and PICALM affecting intracellular trafficking. Methods We investigated the associations of senile plaques (SP) and neurofibrillary tangles (NFT) with the proposed risk genes and APOE, in the Tampere Autopsy Study (TASTY) series (603 cases), a sample of the general population (0 to 97 yrs), who died out-of-hospital. Results Age and the APOEε4 allele associated strongly with all phenotypes of SP, as expected. In age and APOEε4 adjusted analyses, compared to the most common homozygous genotype, burnt out SP were more common among carriers of the C-allele of CLU, whereas the T-allele of PICALM and C-allele of CR1 were linked with lower SP coverage. We found no significant associations between any of the genetic variants and NFT. Conclusions Marginal effects from CLU, CR1 and PICALM suggest that these genes have minimal effects on the development of AD lesions.BioMed Central Open acces

    Psykiatrian palvelut tulevat kotiin

    Get PDF
    Liikkuvilla palveluilla pyritään tulevaisuudessa monipuolistamaan myös psykiatrian lähipalveluja. Satakunnan sairaanhoitopiirissä työmuoto on tuttu etenkin lastenpsykiatrian puolella. Toiminta edellyttää hyvää suunnittelua ja koordinointia

    Ownership and governance of Finnish infrastructure networks

    Get PDF
    This research report investigates and analyzes the pros and cons of different ownership and governance models of infrastructure networks. The report covers most infrastructure networks: transportation networks (roads, streets, railways, airports, harbors) and utility networks (water and sewage, energy and electricity). There is no unifying solution that would fit all sectors in terms of the most efficient ownership model. However, in many sectors reforms are needed towards more elaborated client-supplier frameworks to ensure greater efficiency and cost transparency. Surprisingly, traditional organizational structures do not seem to impact on financial returns of those networks that provide user-financed services. In Finland technical infrastructure networks are typically owned, administered and managed by the public sector as they are considered public goods and critical assets for the wellbeing of citizens. In many ways the sectors have remained passive and with little interaction towards more innovative service provision solutions or organizational models. In terms of developing the networks’ services and their profitability, the greatest business opportunity would result from allowing open entry to market and competition in contracting. This would mean abandonment of negotiated contracts and proactive evolution of functional markets. The scope of business opportunities will increase in all aspect of service delivery; from management to engineering and economic studies, asset management systems, construction and maintenance works, and the labor to do all that

    Immediate effects of deep brain stimulation of anterior thalamic nuclei on executive functions and emotion-attention interaction in humans

    Get PDF
    BACKGROUND: Deep brain stimulation (DBS) of anterior thalamic nuclei (ANT) is a novel promising therapeutic method for treating refractory epilepsy. Despite reports of subjective memory impairments and mood disturbances in patients with ANT-DBS, little is known of its effects on cognitive and affective processes. HYPOTHESIS: The anterior thalamus has connections to prefrontal and limbic networks important for cognitive control and emotional reactivity. More specifically, anterior cingulate cortex (ACC), linked with ANT, has been assigned roles related to response inhibition and attention allocation to threat. Thus, we hypothesized ANT-DBS to influence executive functions, particularly response inhibition, and modulate emotional reactivity to threat. METHOD: Twelve patients having undergone ANT-DBS for intractable epilepsy participated in the study. Patients performed a computer-based executive reaction time (RT) test—that is, a go/ no-go visual discrimination task with threat-related emotional distractors and rule switching, while the DBS was switched ON (5/5 mA constant current) and OFF every few minutes. RESULTS: ANT-DBS increased the amount of commission errors—that is, errors where subjects failed to withhold from responding. Furthermore, ANT-DBS slowed RTs in context of threat-related distractors. When stimulation was turned off, threat-related distractors had no distinct effect on RTs. CONCLUSION: We found immediate objective effects of ANT-DBS on human cognitive control and emotion-attention interaction. We suggest that ANT-DBS compromised response inhibition and enhanced attention allocation to threat due to altered functioning of neural networks that involve the DBS-target, ANT, and the regions connected to it such as ACC. The results highlight the need to consider affective and cognitive side-effects in addition to the therapeutic effect when adjusting stimulation parameters. Furthermore, this study introduces a novel window into cognitive and affective processes by modulating the associative and limbic networks with direct stimulation of key nodes in the thalamus

    Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons

    Get PDF
    Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot–Marie–Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons

    Prognostic value of nuclear morphometry in patients with TNM stage T1 ovarian clear cell adenocarcinoma

    Get PDF
    In 40 patients with TNM stage T1 ovarian clear cell adenocarcinoma, we used nuclear morphometry to study the relations among morphometric variables, clinical prognostic factors and outcome. The presence of one or more giant nuclear cells was positively associated with death (OR = 10.6, P = 0.02) and tended to be associated with disease recurrence (OR = 5.1, P = 0.07). Nuclear irregularity (expressed in terms of the nuclear roundness factor) was positively associated with both death (OR = 8.6, P = 0.02) and disease recurrence (OR = 8.2, P = 0.02). A combination of giant nuclear cell presence or nuclear irregularity proved to be a useful prognostic indicator, with a sensitivity and specificity of 83% and 71% in the prediction of death, and 75% and 71% in the prediction of disease recurrence. Patients' age and substage were of no prognostic value. We conclude that the nuclear morphometric characteristics, especially the presence of giant nuclear cells and nuclear irregularity, may be useful in predicting outcome in patients with early stage ovarian clear cell adenocarcinoma. © 1999 Cancer Research Campaig
    • …
    corecore