3,933 research outputs found

    Black holes, quantum information, and unitary evolution

    Full text link
    The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework of unitary evolution acting on Hilbert spaces comprising subsystems. Here, various constraints can be placed on the dynamics, based on quantum information-theoretic and other general physical considerations, and one can seek to describe dynamics with "minimal" departure from field theory. While usual spacetime locality may not be a precise concept in quantum gravity, approximate locality seems an important ingredient in physics. In such a Hilbert space approach an apparently "coarser" form of localization can be described in terms of tensor decompositions of the Hilbert space of the complete system. This suggests a general framework in which to seek a consistent description of quantum gravity, and approximate emergence of spacetime. Other possible aspects of such a framework -- in particular symmetries -- are briefly discussed.Comment: 39 pages, 5 figures. v2: refs added, very minor clarifications v3: few small changes to agree with published version v4: corrected sign in eq. 3.3

    Panels illuminated by edge-lighted lens technique

    Get PDF
    Electroluminescent lamps used to edge-light a specially ground lens provide nonglare, reduced eye strain panel illumination. There is no noticeable falloff in brightness along the lens edge. Light intensity diminishes toward the lens center. A slight halo, observed along the lens edge, has no detrimental effect

    Vehicles Recognition Using Fuzzy Descriptors of Image Segments

    Full text link
    In this paper a vision-based vehicles recognition method is presented. Proposed method uses fuzzy description of image segments for automatic recognition of vehicles recorded in image data. The description takes into account selected geometrical properties and shape coefficients determined for segments of reference image (vehicle model). The proposed method was implemented using reasoning system with fuzzy rules. A vehicles recognition algorithm was developed based on the fuzzy rules describing shape and arrangement of the image segments that correspond to visible parts of a vehicle. An extension of the algorithm with set of fuzzy rules defined for different reference images (and various vehicle shapes) enables vehicles classification in traffic scenes. The devised method is suitable for application in video sensors for road traffic control and surveillance systems.Comment: The final publication is available at http://www.springerlink.co

    Nickel hydrogen low Earth orbit test program update and status

    Get PDF
    The current status of nickel-hydrogen (NiH2) testing ongong at NWSC, Crane In, and The Aerospace Corporation, El Segundo, Ca are described. The objective of this testing is to develop a database for NiH2 battery use in Low Earth Orbit (LEO) and support applications in Medium Altitude Orbit (MAO). Individual pressure vessel-type cells are being tested. A minimum of 200 cells (3.5 in diameter and 4.5 in diameter) are included in the test, from four U.S. vendors. As of this date (Nov. 18, 1986) approximately 60 cells have completed preliminary testing (acceptance, characterization, and environmental testing) and have gone into life cycling

    Wightman Functions' Behaviour on the Event Horizon of an Extremal Reissner-Nordstr\"om Black Hole

    Get PDF
    A weaker Haag, Narnhofer and Stein prescription as well as a weaker Hessling Quantum Equivalence Principle for the behaviour of thermal Wightman functions on an event horizon are analysed in the case of an extremal Reissner-Nordstr\"{o}m black hole in the limit of a large mass. In order to avoid the degeneracy of the metric in the stationary coordinates on the horizon, a method is introduced which employs the invariant length of geodesics which pass the horizon. First the method is checked for a massless scalar field on the event horizon of the Rindler wedge, extending the original procedure of Haag, Narnhofer and Stein onto the {\em whole horizon} and recovering the same results found by Hessling. Afterwards the HNS prescription and Hessling's prescription for a massless scalar field are analysed on the whole horizon of an extremal Reissner-Nordstr\"{o}m black hole in the limit of a large mass. It is proved that the weak form of the HNS prescription is satisfyed for all the finite values of the temperature of the KMS states, i.e., this principle does not determine any Hawking temperature. It is found that the Reissner-Nordstr\"{o}m vacuum, i.e., T=0T=0 does satisfy the weak HNS prescription and it is the only state which satisfies weak Hessling's prescription, too. Finally, it is suggested that all the previously obtained results should be valid dropping the requirements of a massless field and of a large mass black hole.Comment: 27 pages, standard LaTex, no figures, final version containing the results following from Hessling's principle as they appeared in the other paper gr-qc/9510016, minor changes in the text and in references, it will appear on Class. Quant. Gra

    Positivity violation for the lattice Landau gluon propagator

    Full text link
    We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3) and for three different lattice couplings in the scaling region (beta = 4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t). We also verify that the (real-space) data show good scaling in the range t \in [0,3] fm and can be fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated field theory and may be viewed as a manifestation of confinement.Comment: 5 pages, 6 figures; minor modifications in the text and in the bibliograph

    Comment on: Modular Theory and Geometry

    Full text link
    In this note we comment on part of a recent article by B. Schroer and H.-W. Wiesbrock. Therein they calculate some new modular structure for the U(1)-current-algebra (Weyl-algebra). We point out that their findings are true in a more general setting. The split-property allows an extension to doubly-localized algebras.Comment: 13 pages, corrected versio

    Quantum information transfer and models for black hole mechanics

    Full text link
    General features of information transfer between quantum subsystems, via unitary evolution, are investigated, with applications to the problem of information transfer from a black hole to its surroundings. A particularly direct form of quantum information transfer is "subspace transfer," which can be characterized by saturation of a subadditivity inequality. We also describe more general unitary quantum information transfer, and categorize different models for black hole evolution. Evolution that only creates paired excitations inside/outside the black hole is shown not to extract information, but information-transferring models exist both in the "saturating" and "non-saturating" category. The former more closely capture thermodynamic behavior; the latter generically have enhanced energy flux, beyond that of Hawking.Comment: 31 pages, harvmac. v2: nomenclature change, minor added explanation. v3: small corrections/rewordings; improved figure; version to match publication in PR

    Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

    Full text link
    In the literature on electron-phonon scatterings very often a phenomenological expression for the transition matrix element is used which was derived in the textbooks of Ashcroft/Mermin and of Czycholl. There are various steps in the derivation of this expression. In the textbooks in part different arguments have been used in these steps, but the final result is the same. In the present paper again slightly different arguments are used which motivate the procedure in a more intuitive way. Furthermore, we generalize the phenomenological expression to describe the dependence of the matrix elements on the spin state of the initial and final electron state
    • …
    corecore