386 research outputs found

    Anatomical evaluation of CT-MRI combined femoral model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both CT and MRI are complementary to each other in that CT can produce a distinct contour of bones, and MRI can show the shape of both ligaments and bones. It will be ideal to build a CT-MRI combined model to take advantage of complementary information of each modality. This study evaluated the accuracy of the combined femoral model in terms of anatomical inspection.</p> <p>Methods</p> <p>Six normal porcine femora (180 ± 10 days, 3 lefts and 3 rights) with ball markers were scanned by CT and MRI. The 3D/3D registration was performed by two methods, i.e. the landmark-based 3 points-to-3 points and the surface matching using the iterative closest point (ICP) algorithm. The matching accuracy of the combined model was evaluated with statistical global deviation and locally measure anatomical contour-based deviation. Statistical analysis to assess any significant difference between accuracies of those two methods was performed using univariate repeated measures ANOVA with the Turkey post hoc test.</p> <p>Results</p> <p>This study revealed that the local 2D contour-based measurement of matching deviation was 0.5 ± 0.3 mm in the femoral condyle, and in the middle femoral shaft. The global 3D contour matching deviation of the landmark-based matching was 1.1 ± 0.3 mm, but local 2D contour deviation through anatomical inspection was much larger as much as 3.0 ± 1.8 mm.</p> <p>Conclusion</p> <p>Even with human-factor derived errors accumulated from segmentation of MRI images, and limited image quality, the matching accuracy of CT-&-MRI combined 3D models was 0.5 ± 0.3 mm in terms of local anatomical inspection.</p

    Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats

    Get PDF
    This study examined the influence of the N-methyl-D-aspartate receptor (NMDAR) on the modulation of related spinal signaling after electroacupuncture (EA) treatment in normal rats. Bilateral 2 Hz EA stimulations (1-2-3.0 mA) were delivered at acupoints corresponding to Zusanli (ST36) and Sanyinjiao (SP6) in men for 30 min. Thermal sensitization was strongly inhibited by EA, but this analgesia was reduced by preintrathecal injection of the NMDAR antagonist, MK801. Phosphorylation of the NMDAR NR2B subunit, cAMP response element-binding protein (CREB), and especially phosphatidylinositol 3-kinase (PI3K) were significantly induced by EA. However, these marked phosphorylations were not observed in MK801-pretreated rats. EA analgesia was reduced by preintrathecal injection with the calcium chelators Quin2 and TMB8, similar to the results evident using MK801. Phosphorylation of PI3K and CREB induced by EA was also inhibited by TMB8. Calcium influx by NMDAR activation may play an important role in EA analgesia of normal rats through the modulation of the phosphorylation of spinal PI3K and CREB

    miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells

    Get PDF
    AbstractHuman mesenchymal stem cells (hMSCs) have self-renewal and differentiation capabilities but the regulatory mechanisms of MSC fate determination remain poorly understood. Here, we aimed to identify microRNAs enriched in hMSCs that modulate differentiation commitments. Microarray analysis revealed that miR-140-5p is commonly enriched in undifferentiated hMSCs from various tissue sources. Moreover, bioinformatic analysis and luciferase reporter assay validated that miR-140-5p directly represses bone morphogenic protein 2 (BMP2). Furthermore, blocking miR-140-5p in hMSCs increased the expression of BMP signaling components and critical regulators of osteogenic differentiation. We propose that miR-140-5p functionally inhibits osteogenic lineage commitment in undifferentiated hMSCs

    Antibiotic-induced Severe Neutropenia with Multidrug-Dependent Antineutrophil Antibodies Developed in A Child with Streptococcus pneumoniae Infection

    Get PDF
    Drug-induced neutropenia (DIN), particularly that in which antibiotic-dependent antineutrophil antibodies have been detected, is a rare disorder. We report the case of a child with pneumococcal pneumonia, who experienced severe neutropenia during various antibiotic treatments. We detected 4 kinds (cefotaxim, augmentin, vancomycin, and tobramycin) of antibiotic-dependent antineutrophil antibodies by using the mixed passive hemagglutination assay (MPHA) technique with this child

    Depletion of Mitochondrial Components from Extracellular Vesicles Secreted from Astrocytes in a Mouse Model of Fragile X Syndrome

    Get PDF
    Mitochondrial dysfunction contributes to neurodegenerative diseases and developmental disorders such as Fragile X syndrome (FXS). The cross-talk between mitochondria and extracellular vesicles (EVs) suggests that EVs may transfer mitochondrial components as intermediators for intracellular communication under physiological and pathological conditions. In the present study, the ability of EVs to transfer mitochondrial components and their role in mitochondrial dysfunction in astrocytes were examined in the brains of Fmr1 knockout (KO) mice, a model of FXS. The amounts of mitochondrial transcription factor NRF-1, ATP synthases ATP5A and ATPB, and the mitochondrial membrane protein VDAC1 in EVs were reduced in cerebral cortex samples and astrocytes from Fmr1 KO mice. These reductions correspond to decreased mitochondrial biogenesis and transcriptional activities in Fmr1 KO brain, along with decreased mitochondrial membrane potential (MMP) with abnormal localization of vimentin intermediate filament (VIF) in Fmr1 KO astrocytes. Our results suggest that mitochondrial dysfunction in astrocytes is associated with the pathogenesis of FXS and can be monitored by depletion of components in EVs. These findings may improve the ability to diagnose developmental diseases associated with mitochondrial dysfunction, such as FXS and autism spectrum disorders (ASD). © 2021 by the authors. Licensee MDPI, Basel, Switzerland.1

    Comparison of Clinical Efficacy of Newfactan® versus Surfacten® for the Treatment of Respiratory Distress Syndrome in the Newborn Infants

    Get PDF
    Newfactan® is a domestically developed, bovine lung-derived, semi-synthetic surfactant. The aim of this study was to compare the clinical efficacy of Newfactan® with that of Surfacten® in the treatment of respiratory distress syndrome (RDS). Newfactan® or Surfacten® was randomly allocated to 492 newborn infants who were diagnosed as RDS and required surfactant instillation in four participating hospitals. The comparisons were made individually in two subsets of infants by birth weight (<1,500 g group [n=253] and ≥1,500 g group [n=239]). Short-term responses to surfactant and acute complications, such as the total doses of surfactant instilled, response type, extubation rate, ventilator settings, changes in respiratory parameters, air leak, patent ductus arteriosus, pulmonary hemorrhage, and intraventricular hemorrhage, and mortality during the 96 hr after surfactant instillation were measured. Long-term outcome and complications, such as total duration of intubation, bronchopulmonary dysplasia and periventricular leukomalacia, and ultimate mortality were measured. There were no significant differences in demographic and perinatal variables, short-term responses to surfactant and acute complications, and long-term outcome and complications between Newfactan® and Surfacten® in both birth weight groups. We concluded that Newfactan® was comparable to Surfacten® in the clinical efficacy in the treatment of RDS in both birth weight groups

    Characterization of diverse natural variants of CYP102A1 found within a species of Bacillus megaterium

    Get PDF
    An extreme diversity of substrates and catalytic reactions of cytochrome P450 (P450) enzymes is considered to be the consequence of evolutionary adaptation driven by different metabolic or environmental demands. Here we report the presence of numerous natural variants of P450 BM3 (CYP102A1) within a species of Bacillus megaterium. Extensive amino acid substitutions (up to 5% of the total 1049 amino acid residues) were identified from the variants. Phylogenetic analyses suggest that this P450 gene evolve more rapidly than the rRNA gene locus. It was found that key catalytic residues in the substrate channel and active site are retained. Although there were no apparent variations in hydroxylation activity towards myristic acid (C14) and palmitic acid (C16), the hydroxylation rates of lauric acid (C12) by the variants varied in the range of >25-fold. Interestingly, catalytic activities of the variants are promiscuous towards non-natural substrates including human P450 substrates. It can be suggested that CYP102A1 variants can acquire new catalytic activities through site-specific mutations distal to the active site

    Phenotypic and Genotypic Correction of WASP Gene Mutation in Wiskott-Aldrich Syndrome by Unrelated Cord Blood Stem Cell Transplantation

    Get PDF
    We present two cases of Wiskott-Aldrich syndrome (WAS), in which nonsense mutations in the WASP gene were corrected phenotypically as well as genotypically by unrelated cord blood stem cell transplantation (CBSCT). Two male patients were diagnosed with WAS at the age of 5-month and 3-month and each received unrelated CBSCT at 16-month and 20-month of age, respectively. The infused cord blood (CB) units had 4/6 and 5/6 HLA matches and the infusion doses of total nucleated cells (TNC) and CD34+ cells were 6.24×107/kg and 5.08×107/kg for TNC and 1.33×105/kg and 4.8×105/kg for CD34+ cells, for UPN1 and UPN2, respectively. Complete donor cell chimerism was documented by variable number tandem repeat (VNTR) with neutrophil engraftment on days 31 and 13 and platelets on days 58 and 50, respectively. Immunologic reconstitution demonstrated that CBSCT resulted in consistent and stable T-, B-, and NK-cell development. Flow cytometric analysis for immunologic markers and sequence analysis of the WASP gene mutation revealed a normal pattern after CBSCT. These cases demonstrate that CBs can be an important source of stem cells for the phenotypical and genotypical correction of genetic diseases such as WAS

    Clinical outcomes of pneumococcal pneumonia caused by antibiotic-resistant strains in Asian countries: a study by the Asian network for surveillance of resistant pathogens

    Get PDF
    To evaluate the clinical outcomes of pneumococcal pneumonia caused by antibiotic-resistant strains in Asian countries, we performed a prospective observational study of 233 cases of adult pneumococcal pneumonia in 9 Asian countries from January 2000 to June 2001. Among 233 isolates, 128 (55%) were not susceptible to penicillin (25.3% were intermediately susceptible, and 29.6% were resistant). Clinical severity of pneumococcal pneumonia was not significantly different between antibiotic-resistant and antibiotic-susceptible groups. Mortality rates among patients with pneumococcal pneumonia caused by penicillin-, cephalosporin-, or macrolide-resistant strains were not higher than those with antibiotic-susceptible pneumococcal pneumonia. Bacteremia and mechanical ventilation were significant risk factors for death, but any kind of antibiotic resistance was not associated with increased mortality due to pneumococcal pneumonia. Outcome of pneumococcal pneumonia was not significantly affected by drug resistance, and current antimicrobial regimens are mostly effective in the treatment of pneumococcal pneumonia, despite the widespread emergence of in vitro resistance
    corecore