291 research outputs found

    A Thermal Management System to Reuse Thermal Waste Released by High-Power Light-Emitting Diodes

    Full text link
    © 1963-2012 IEEE. In this article, a comprehensive and efficient thermal management system is proposed to harvest and reuse the thermal waste of high-power light-emitting diodes (HP-LEDs) for the first time. Besides a conventional cooling system, including a thermoelectric (TE) cooler (TEC), a heatsink, and a fan, the proposed thermal management system also employs a TE generator (TEG), a temperature sensor, a voltage boost converter, and a microcontroller for thermal waste recycling. In this system, some of the thermal waste released by the HP-LED is harvested by the TEG and converted into electrical energy. With the help of a voltage boost converter, the harvested electrical power is used to power a temperature sensor for monitoring the surface temperature of the HP-LED. The entire system is regulated by the microcontroller. The system is elaborately established, tested, and the results are discussed. The experimental results show that the proposed system has an output electrical power of approximately 696.5μW , which is used to power a temperature sensor as a demonstration. The sensor works well, and the discrepancy of the surface temperature of the HP-LED measured by the sensor and by a thermometer is less than 5.38%, which validates the proposed thermal management system

    A Double-Voltage-Controlled Effective Thermal Conductivity Model of Graphene for Thermoelectric Cooling

    Full text link
    © 1963-2012 IEEE. Graphene provides a new opportunity for thermoelectric study based on its unique heat transfer behavior controllable by a gate voltage. In this paper, an effective thermal conductivity model of graphene for thermoelectric cooling is proposed. The model is based on a double-voltage-control mechanism. According to the law of Fourier heat conduction, an effective thermal conductivity model of the proposed thermoelectric cooling device is derived taking a tunable external voltage into account. Then, a gate voltage is used which can change graphene's thermoelectric characteristics. To verify the correctness and effectiveness of the proposed model, a circuit simulation model using HSPICE is built based on the thermoelectric duality. The simulation results from HSPICE and the calculated results from the mathematic model show good agreements with each other. This paper provides a novel precisely controlling method for thermoelectric cooling

    Improving the Energy-Conversion Efficiency of a PV-TE System with an Intelligent Power-Track Switching Technique and Efficient Thermal-Management Scheme

    Full text link
    A photovoltaic-thermoelectric (PV-TE) hybrid system can be used for efficient thermal energy utilization from the generated waste heat in PV devices. In this article, an efficient PV-TE hybrid system with intelligent power-track switching technique and thermal management based on energy conversion is proposed. To make the output power of PV-TE system stable and normalized, an incorporated stable voltage circuit is designed based on energy conversion. In addition, a control-and-monitoring strategy is launched in the system to realize the normal collecting for the output power of PV-TE system. Finally, a battery protection circuit is performed to ensure that the energy converted by the entire system is effectively stored. The experimental results show that more electrical energy about 84 034 J was obtained with our energy harvesting system than that of a single photovoltaic (PV) cell. Besides, the thermal gradient of PV cells is indirectly reduced the operation of the whole system, which is automatically monitored due to the proposed intelligent power-track switching technique

    An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem

    Get PDF
    The flexible job shop scheduling problem (FJSP) is vital to manufacturers especially in today’s constantly changing environment. It is a strongly NP-hard problem and therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing metaheuristics and heuristics, however, have low efficiency in convergence speed. To overcome this drawback, this paper develops an elitist quantum-inspired evolutionary algorithm. The algorithm aims to minimise the maximum completion time (makespan). It performs a global search with the quantum-inspired evolutionary algorithm and a local search with a method that is inspired by the motion mechanism of the electrons around an atomic nucleus. Three novel algorithms are proposed and their effect on the whole search is discussed. The elitist strategy is adopted to prevent the optimal solution from being destroyed during the evolutionary process. The results show that the proposed algorithm outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks

    Controllable Synthesis of Single-Crystalline CdO and Cd(OH)2Nanowires by a Simple Hydrothermal Approach

    Get PDF
    Single-crystalline Cd(OH)2 or CdO nanowires can be selectively synthesized at 150 °C by a simple hydrothermal method using aqueous Cd(NO3)2 as precursor. The method is biosafe, and compared to the conventional oil-water surfactant approach, more environmental-benign. As revealed by the XRD results, CdO or Cd(OH)2 nanowires can be generated in high purity by varying the time of synthesis. The results of FESEM and HRTEM analysis show that the CdO nanowires are formed in bundles. Over the CdO-nanowire bundles, photoluminescence at ~517 nm attributable to near band-edge emission of CdO was recorded. Based on the experimental results, a possible growth mechanism of the products is proposed

    Production Scheduling Requirements to Smart Manufacturing

    Get PDF
    The production scheduling has attracted a lot of researchers for many years, however most of the approaches are not targeted to deal with real manufacturing environments, and those that are, are very particular for the case study. It is crucial to consider important features related with the factories, such as products and machines characteristics and unexpected disturbances, but also information such as when the parts arrive to the factory and when should be delivered. So, the purpose of this paper is to identify some important characteristics that have been considered independently in a lot of studies and that should be considered together to develop a generic scheduling framework to be used in a real manufacturing environment.authorsversionpublishe

    PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    Get PDF
    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar

    Expenditures for the care of HIV-infected patients in rural areas in China's antiretroviral therapy programs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Chinese government has provided health services to those infected by the human immunodeficiency virus (HIV) under the acquired immunodeficiency syndrome (AIDS) care policy since 2003. Detailed research on the actual expenditures and costs for providing care to patients with AIDS is needed for future financial planning of AIDS health care services and possible reform of HIV/AIDS-related policy. The purpose of the current study was to determine the actual expenditures and factors influencing costs for untreated AIDS patients in a rural area of China after initiating highly active antiretroviral therapy (HAART) under the national Free Care Program (China CARES).</p> <p>Methods</p> <p>A retrospective cohort study was conducted in Yunnan and Shanxi Provinces, where HAART and all medical care are provided free to HIV-positive patients. Health expenditures and costs in the first treatment year were collected from medical records and prescriptions at local hospitals between January and June 2007. Multivariate linear regression was used to determine the factors associated with the actual expenditures in the first antiretroviral (ARV) treatment year.</p> <p>Results</p> <p>Five ARV regimens are commonly used in China CARES: zidovudine (AZT) + lamivudine (3TC) + nevirapine (NVP), stavudine (D4T) + 3TC + efavirenz (EFV), D4T + 3TC + NVP, didanosine (DDI) + 3TC + NVP and combivir + EFV. The mean annual expenditure per person for ARV medications was US2,242(US2,242 (US1 = 7 Chinese Yuan (CNY)) among 276 participants. The total costs for treating all adverse drug events (ADEs) and opportunistic infections (OIs) were US29,703andUS29,703 and US23,031, respectively. The expenses for treatment of peripheral neuritis and cytomegalovirus (CMV) infections were the highest among those patients with ADEs and OIs, respectively. On the basis of multivariate linear regression, CD4 cell counts (100-199 cells/μL versus <100 cells/μL, <it>P </it>= 0.02; and ≥200 cells/μL versus <100 cells/μL, <it>P </it>< 0.004), residence in Mangshi County (<it>P </it>< 0.0001), ADEs (<it>P </it>= 0.04) and OIs (<it>P </it>= 0.02) were significantly associated with total expenditures in the first ARV treatment year.</p> <p>Conclusions</p> <p>This is the first study to determine the actual costs of HIV treatment in rural areas of China. Costs for ARV drugs represented the major portion of HIV medical expenditures. Initiating HAART in patients with higher CD4 cell count levels is likely to reduce treatment expenses for ADEs and OIs in patients with AIDS.</p

    TRPM2 channel deficiency prevents delayed cytosolic Zn²⁺ accumulation and CA1 pyramidal neuronal death after transient global ischemia

    No full text
    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn²⁺ level ([Zn²⁺]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia-reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn²⁺]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn²⁺]c but abolished the cytosolic Zn²⁺ accumulation during reperfusion as well as ROS-elicited increases in the [Zn²⁺]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn²⁺]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury
    corecore