972 research outputs found

    Bone-protective effects of bioactive fractions and ingredients in Sambucus williamsii HANCE

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Erythrina variegata extract exerts osteoprotective effects by suppression of the process of bone resorption

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Potential Role of miRNAs in Developmental Haemostasis

    Get PDF
    MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that are negative regulators in a crescent number of physiological and pathological processes. However, their role in haemostasis, a complex physiological process involving multitude of effectors, is just beginning to be characterized. We evaluated the changes of expression of miRNAs in livers of neonates (day one after birth) and adult mice by microarray and qRT-PCR trying to identify miRNAs that potentially may also be involved in the control of the dramatic change of hepatic haemostatic protein levels associated with this transition. Twenty one out of 41 miRNAs overexpressed in neonate mice have hepatic haemostatic mRNA as potential targets. Six of them identified by two in silico algorithms potentially bind the 3′UTR regions of F7, F9, F12, FXIIIB, PLG and SERPINC1 mRNA. Interestingly, miR-18a and miR-19b, overexpressed 5.4 and 8.2-fold respectively in neonates, have antithrombin, a key anti-coagulant with strong anti-angiogenic and anti-inflammatory roles, as a potential target. The levels of these two miRNAs inversely correlated with antithrombin mRNA levels during development (miR-19b: R = 0.81; p = 0.03; miR-18a: R = 0.91; p<0.001). These data suggest that miRNAs could be potential modulators of the haemostatic system involved in developmental haemostasis

    Introgression of Chromosome 3Ns from Psathyrostachys huashanica into Wheat Specifying Resistance to Stripe Rust

    Get PDF
    Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat- P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding

    Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

    Get PDF
    First-principles calculations are performed to identify the pristine and Si doped 3D metallic T6 carbon structure (having both sp(2) and sp(3) type hybridization) as a new carbon based anode material. The pi electron of C-2 atoms (sp2 bonded) forms an out of plane network that helps to capture the Li atom. The highest Li storage capacity of Si doped T6 structure with conformation Li1.7Si1C5 produces theoretical specific capacity of 632 mAh/g which substantially exceeding than graphite. Also, open-circuit voltage (OCV) with respect to Li metal shows large negative when compared to the pristine T6 structure. This indicates modifications in terms of chemical properties are required in anode materials for practical application. Among various doped (Si, Ge, Sn, B, N) configuration, Si doped T6 structure provides a stable positive OCV for high Li concentrations. Likewise, volume expansion study also shows Si doped T6 structure is more stable with less pulverization and substantial capacity losses in comparison with graphite and silicon as an anode materials. Overall, mixed hybridized (sp(2) + sp(3)) Si doped T6 structure can become a superior anode material than present sp2 hybridized graphite and sp(3) hybridized Si structure for modern Lithium ion batteries.ope

    Integration of aqueous (micellar) two-phase systems on the proteins separation

    Get PDF
    A two-step approach combining an aqueous two-phase system (ATPS) and an aqueous micellar two-phase system (AMTPS), both based on the thermo-responsive copolymer Pluronic L-35, is here proposed for the purification of proteins and tested on the sequential separation of three model proteins, cytochrome c, ovalbumin and azocasein. Phase diagrams were established for the ATPS, as well as co-existence curves for the AMTPS. Then, by scanning and choosing the most promising systems, the separation of the three model proteins was performed. The aqueous systems based on Pluronic L-35 and potassium phosphate buffer (pH = 6.6) proved to be the most selective platform to separate the proteins (SAzo/Cyt = 1667; SOva/Cyt = 5.33 e SAzo/Ova = 1676). The consecutive fractionation of these proteins as well as their isolation from the aqueous phases was proposed, envisaging the industrial application of this downstream strategy. The environmental impact of this downstream process was studied, considering the carbon footprint as the final output. The main contribution to the total carbon footprint comes from the ultrafiltration (~ 49%) and the acid precipitation (~ 33%) due to the energy consumption in the centrifugation. The ATPS step contributes to ~ 17% while the AMTPS only accounts for 0.30% of the total carbon footprint.publishe

    Specification and guideline for technical aspects and scanning parameter settings of neonatal lung ultrasound examination

    Get PDF
    Lung ultrasound (LUS) is now widely used in the diagnosis and monitor of neonatal lung diseases.Nevertheless, in the published literatures,the LUS images may display a significant variation in technical execution,while scanning parameters may influence diagnostic accuracy.The inter- and intra-observer reliabilities of ultrasound exam have been extensively studied in general and in LUS.As expected,the reliability declines in the hands of novices when they perform the point-of-care ultrasound (POC US).Consequently,having appropriate guidelines regarding to technical aspects of neonatal LUS exam is very important especially because diagnosis is mainly based on interpretation of artifacts produced by the pleural line and the lungs.The present work aimed to create an instrument operation specification and parameter setting guidelines for neonatal LUS.Technical aspects and scanning parameter settings that allow for standardization in obtaining LUS images include (1)select a high-end equipment with high-frequency linear array transducer (12-14 MHz).(2)Choose preset suitable for lung examination or small organs.(3)Keep the probe perpendicular to the ribs or parallel to the intercostal space.(4)Set the scanning depth at 4-5 cm.(5)Set 1-2 focal zones and adjust them close to the pleural line.(6)Use fundamental frequency with speckle reduction 2-3 or similar techniques.(7)Turn off spatial compounding imaging.(8)Adjust the time-gain compensation to get uniform image from the near-to far-field
    corecore