91 research outputs found

    Quantum Computing

    Full text link
    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53 (4 March 2010). Published version is more up-to-date and has several corrections, but is half the length with far fewer reference

    Trait anxiety predicts disease-specific health status in early-stage breast cancer patients

    Get PDF
    The objectives of this study were to examine the differences in health status (HS) of women with breast cancer (BC) at different moments in time, and between women scoring high and not high on trait anxiety, and to identify possible predictors of HS 6 and 12 months after surgery. Patients (N = 223) completed a trait anxiety questionnaire before diagnosis. Women who received a diagnosis of BC completed a BC-specific HS questionnaire 1, 3, 6 and 12 months after surgery. ANCOVA for repeated measures and multiple regression analysis were used in the analyses. Women scoring high on trait anxiety had significant (P < .005) lower Body image, worse Future perspective and Sexual functioning, and more Side-effects than women who did not score high on trait anxiety. At 6 and 12 months after surgery, the same aspects of HS were predicted by higher trait anxiety scores. Higher scores on trait anxiety resulted in worse scores on four HS domains, indicating that there should be more attention for this group of patients, even before treatment start

    Diagnostic Accuracy of Recombinant Immunoglobulin-like Protein A-Based IgM ELISA for the Early Diagnosis of Leptospirosis in the Philippines

    Get PDF
    Background Leptospirosis is an important but largely under-recognized public health problem in the tropics. Establishment of highly sensitive and specific laboratory diagnosis is essential to reveal the magnitude of problem and to improve treatment. This study aimed to evaluate the diagnostic accuracy of a recombinant LigA protein based IgM ELISA during outbreaks in the clinical-setting of a highly endemic country. Methodology/Principal Findings A prospective study was conducted from October 2011 to September 2013 at a national referral hospital for infectious diseases in Manila, Philippines. Patients who were hospitalized with clinically suspected leptospirosis were enrolled. Plasma and urine were collected on admission and/or at discharge and tested using the LigA-IgM ELISA and a whole cellbased IgM ELISA. Sensitivity and specificity of these tests were evaluated with cases diagnosed by microscopic agglutination test (MAT), culture and LAMP as the composite reference standard and blood bank donors as healthy controls: the mean+3 standard deviation optical density value of healthy controls was used as the cut-off limit (0.062 for the LigA-IgM ELISA and 0.691 for the whole cell-based IgM ELISA). Of 304 patients enrolled in the study, 270 (89.1%) were male and the median age was 30.5 years; 167 (54.9%) were laboratory confirmed. The sensitivity and ROC curve AUC for the LigA-IgM ELISA was significantly greater than the whole cell-based IgM ELISA (69.5% vs. 54.3%, p<0.01; 0.90 vs. 0.82, p<0.01) on admission, but not at discharge. The specificity of LigA-IgM ELISA and whole cell-based IgM ELISA were not significantly different (98% vs. 97%). Among 158 MAT negative patients, 53 and 28 were positive by LigA- and whole cell-based IgM ELISA, respectively; if the laboratory confirmation was re-defined by LigA-IgM ELISA and LAMP, the clinical findings were more characteristic of leptospirosis than the diagnosis based on MAT/ culture/LAMP. Conclusions/Significance The newly developed LigA-IgM ELISA is more sensitive than the whole cell-based IgM based ELISA. Although the final diagnosis must be validated by more specific tests, LigAIgM ELISA could be a useful diagnostic test in a real clinical-setting, where diagnosis is needed in the early phase of infection

    Speckles and DIC or Checkerboards and LSA?

    No full text
    International audienceTwo measurement techniques, namely DIC and LSA, are compared in this study. Both techniques consist in minimizing the optical residual. DIC performs the minimization in the real domain on speckles. LSA performs this minimization in the Fourier domain on periodic patterns such as checkerboards. It is shown here that for the same systematic error and the same spatial resolution, the noise level in displacement and strain maps is lower with LSA than with DIC
    corecore