132 research outputs found
An EPTAS for Scheduling on Unrelated Machines of Few Different Types
In the classical problem of scheduling on unrelated parallel machines, a set
of jobs has to be assigned to a set of machines. The jobs have a processing
time depending on the machine and the goal is to minimize the makespan, that is
the maximum machine load. It is well known that this problem is NP-hard and
does not allow polynomial time approximation algorithms with approximation
guarantees smaller than unless PNP. We consider the case that there
are only a constant number of machine types. Two machines have the same
type if all jobs have the same processing time for them. This variant of the
problem is strongly NP-hard already for . We present an efficient
polynomial time approximation scheme (EPTAS) for the problem, that is, for any
an assignment with makespan of length at most
times the optimum can be found in polynomial time in the
input length and the exponent is independent of . In particular
we achieve a running time of , where
denotes the input length. Furthermore, we study three other problem
variants and present an EPTAS for each of them: The Santa Claus problem, where
the minimum machine load has to be maximized; the case of scheduling on
unrelated parallel machines with a constant number of uniform types, where
machines of the same type behave like uniformly related machines; and the
multidimensional vector scheduling variant of the problem where both the
dimension and the number of machine types are constant. For the Santa Claus
problem we achieve the same running time. The results are achieved, using mixed
integer linear programming and rounding techniques
Arithmetical Congruence Preservation: from Finite to Infinite
Various problems on integers lead to the class of congruence preserving
functions on rings, i.e. functions verifying divides for all
. We characterized these classes of functions in terms of sums of rational
polynomials (taking only integral values) and the function giving the least
common multiple of . The tool used to obtain these
characterizations is "lifting": if is a surjective morphism,
and a function on a lifting of is a function on such that
. In this paper we relate the finite and infinite notions
by proving that the finite case can be lifted to the infinite one. For -adic
and profinite integers we get similar characterizations via lifting. We also
prove that lattices of recognizable subsets of are stable under inverse
image by congruence preserving functions
Homomorphic encryption and some black box attacks
This paper is a compressed summary of some principal definitions and concepts
in the approach to the black box algebra being developed by the authors. We
suggest that black box algebra could be useful in cryptanalysis of homomorphic
encryption schemes, and that homomorphic encryption is an area of research
where cryptography and black box algebra may benefit from exchange of ideas
A Multivariate Approach for Checking Resiliency in Access Control
In recent years, several combinatorial problems were introduced in the area
of access control. Typically, such problems deal with an authorization policy,
seen as a relation , where means that
user is authorized to access resource . Li, Tripunitara and Wang (2009)
introduced the Resiliency Checking Problem (RCP), in which we are given an
authorization policy, a subset of resources , as well as
integers , and . It asks whether upon removal of
any set of at most users, there still exist pairwise disjoint sets of
at most users such that each set has collectively access to all resources
in . This problem possesses several parameters which appear to take small
values in practice. We thus analyze the parameterized complexity of RCP with
respect to these parameters, by considering all possible combinations of . In all but one case, we are able to settle whether the problem is in
FPT, XP, W[2]-hard, para-NP-hard or para-coNP-hard. We also consider the
restricted case where for which we determine the complexity for all
possible combinations of the parameters
Polynomial Kernels for Weighted Problems
Kernelization is a formalization of efficient preprocessing for NP-hard
problems using the framework of parameterized complexity. Among open problems
in kernelization it has been asked many times whether there are deterministic
polynomial kernelizations for Subset Sum and Knapsack when parameterized by the
number of items.
We answer both questions affirmatively by using an algorithm for compressing
numbers due to Frank and Tardos (Combinatorica 1987). This result had been
first used by Marx and V\'egh (ICALP 2013) in the context of kernelization. We
further illustrate its applicability by giving polynomial kernels also for
weighted versions of several well-studied parameterized problems. Furthermore,
when parameterized by the different item sizes we obtain a polynomial
kernelization for Subset Sum and an exponential kernelization for Knapsack.
Finally, we also obtain kernelization results for polynomial integer programs
A Subfield Lattice Attack on Overstretched NTRU Assumptions:Cryptanalysis of Some FHE and Graded Encoding Schemes
International audienc
Parameterized Complexity of Maximum Edge Colorable Subgraph
A graph is {\em -edge colorable} if there is a coloring , such that for distinct , we have
. The {\sc Maximum Edge-Colorable Subgraph} problem
takes as input a graph and integers and , and the objective is to
find a subgraph of and a -edge-coloring of , such that . We study the above problem from the viewpoint of Parameterized
Complexity. We obtain \FPT\ algorithms when parameterized by: the vertex
cover number of , by using {\sc Integer Linear Programming}, and ,
a randomized algorithm via a reduction to \textsc{Rainbow Matching}, and a
deterministic algorithm by using color coding, and divide and color. With
respect to the parameters , where is one of the following: the
solution size, , the vertex cover number of , and l -
{\mm}(G), where {\mm}(G) is the size of a maximum matching in ; we show
that the (decision version of the) problem admits a kernel with vertices. Furthermore, we show that there is no kernel of size
, for any and computable
function , unless \NP \subseteq \CONPpoly
Slide reduction, revisited—filling the gaps in svp approximation
We show how to generalize Gama and Nguyen's slide reduction algorithm [STOC
'08] for solving the approximate Shortest Vector Problem over lattices (SVP).
As a result, we show the fastest provably correct algorithm for
-approximate SVP for all approximation factors . This is the range of approximation factors most
relevant for cryptography
Online Algorithms on Antipowers and Antiperiods
The definition of antipower introduced by Fici et al. (ICALP 2016) captures the notion of being the opposite of a power: a sequence of k pairwise distinct blocks of the same length. Recently, Alamro et al. (CPM 2019) defined a string to have an antiperiod if it is a prefix of an antipower, and gave complexity bounds for the offline computation of the minimum antiperiod and all the antiperiods of a word. In this paper, we address the same problems in the online setting. Our solutions rely on new arrays that compactly and incrementally store antiperiods and antipowers as the word grows, obtaining in the process this information for all the word’s prefixes. We show how to compute those arrays online in O(n log n) space, O(n log n) time, and o(n^epsilon) delay per character, for any constant epsilon > 0. Running times are worst-case and hold with high probability. We also discuss more space-efficient solutions returning the correct result with high probability, and small data structures to support random access to those arrays
- …
