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Abstract. In recent years, several combinatorial problems were intro-
duced in the area of access control. Typically, such problems deal with an
authorization policy, seen as a relation UR ⊆ U ×R, where (u, r) ∈ UR
means that user u is authorized to access resource r. Li, Tripunitara and
Wang (2009) introduced the Resiliency Checking Problem (RCP), in
which we are given an authorization policy, a subset of resources P ⊆ R,
as well as integers s ≥ 0, d ≥ 1 and t ≥ 1. It asks whether upon re-
moval of any set of at most s users, there still exist d pairwise disjoint
sets of at most t users such that each set has collectively access to all
resources in P . This problem possesses several parameters which ap-
pear to take small values in practice. We thus analyze the parameterized
complexity of RCP with respect to these parameters, by considering all
possible combinations of |P |, s, d, t. In all but one case, we are able to
settle whether the problem is in FPT, XP, W[2]-hard, para-NP-hard or
para-coNP-hard. We also consider the restricted case where s = 0 for
which we determine the complexity for all possible combinations of the
parameters.

1 Introduction

1.1 Context and definition of the problem

Access control is a fundamental aspect of the security of any multi-user com-
puting system. Typically, it is based on the idea of specifying and enforcing an
authorization policy, identifying which interactions between a set of users U and
a set of resources R are to be allowed by the system [11]. More formally, an
authorization policy is defined as a relation UR ⊆ U × R, where (u, r) ∈ UR
means that user u is authorized to access resource r. Quite recently, we have seen
the introduction of resiliency policies, whose satisfaction indicates that a system
will continue to function as intended in the absence of some number of autho-
rized users [1, 10, 12]. Li, Tripunitara and Wang’s seminal work [10] introduces a
number of problems associated with the satisfaction of a resiliency policy. One
of their motivating examples concerns an emergency situation (e.g., a natural
disaster) requiring that some critical task be performed in different sites by sev-
eral teams of users. We thus require that each team has enough permissions (or
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ability) to carry out the task, while an upper bound on the size of teams can
also be set (due to constraints on transportation, for example).

For a user u ∈ U and a set of users V ⊆ U , we define NUR(u) = {r ∈ R :
(u, r) ∈ UR} the neighborhood of u and, by extension, NUR(V ) =

⋃
u∈V NUR(u)

the neighborhood of V , omitting the subscript UR if the authorization policy is
clear from the context. Given an authorization policy UR ⊆ U ×R, an instance
of the Resiliency Checking Problem (RCP) is defined by a resiliency policy
res(P, s, d, t), where P ⊆ R, s ≥ 0, d ≥ 1 and t ≥ 1. We say that UR satisfies
res(P, s, d, t) if and only if for every subset S ⊆ U of at most s users, there exist
d pairwise disjoint subsets of users V1, . . . , Vd such that for all i ∈ {1, . . . , d}:

Vi ∩ S = ∅, (1)

|Vi| ≤ t, (2)

N(Vi) ⊇ P. (3)

We are now ready to define the main problem we study in this paper:

Resiliency Checking Problem (RCP)
Input: UR ⊆ U ×R, P ⊆ R, s ≥ 0, d ≥ 1, t ≥ 1.
Question: Does UR satisfy res(P, s, d, t) ?

Furthermore, we will adopt the bracket notation RCP〈〉 used by Li et al. [10]
to denote some restrictions of the problem, in which one or more parameters
(among s, d and t) are fixed. In particular, we will consider the cases where s
and d are respectively set to 0 and/or 1 (or other fixed positive values), while t
might be set to ∞, meaning that there is no constraint on the size of the sets
(which is actually equivalent to t = |P |, implying that we may assume in the
remainder that t ≤ |P |). For instance, RCP〈s = 0〉 denotes the variant in which
s is fixed to 0, i.e. we ask for the satisfaction of res(P, 0, d, t). In the remainder
of the paper, we set p = |P |.

Given an instance of RCP〈〉, we say that a set of d pairwise disjoint subsets
of users V = {V1, . . . , Vd} satisfying conditions (2) and (3) is a set of teams. For

such a set of teams, we define U(V ) =
⋃d

i=1 Vi. Given U ′ ⊆ U , the restriction
of UR to U ′ is defined by UR|U ′ = UR ∩ (U ′ × R). Finally, a set of users
S ⊆ U is called a blocker set if for every set of teams V = {V1, . . . , Vd}, we
have U(V ) ∩ S 6= ∅. Equivalently, observe that S is a blocker set if and only
if UR|U\S does not satisfy res(P, 0, d, t). Throughout the paper, we write [d] to
denote {1, . . . , d} for any integer d ≥ 1, and we will often make use of the O∗(.)
notation, which omits polynomial factors and terms.

1.2 Parameters

An instance of RCP〈〉 contains several parameters (namely s, d and t) which
may be used for the complexity analysis of the problem. An interesting point
of the work of Li et al. [10] is that the number of users in an organization will
typically be large in comparison to the other parameters (s, d, t, and even p) in



practice. In their experiments, the maximum values used are n = 100, p = 10
and d = 7 (they only run experiments on the variant where t = ∞, but, as we
observed previously, we may set t = p). With this in mind, we exploit the theory
of fixed-parameter tractability in order to settle the parameterized complexity
of the problem.

Given an instance x (of size |x|) of a decision problem, with some parameter1

k, we are interested in algorithms deciding whether x is positive or negative in
polynomial time when k is bounded above by a constant. More precisely, if such
an algorithm has running time O(f(k)|x|O(1)) for some computable function f ,
then we will say that this algorithm is fixed-parameter tractable (FPT), while if
its running time is O(|x|f(k)) for some computable function f , we will say that
this algorithm is XP (an FPT algorithm is thus an XP algorithm). By extension,
FPT (resp. XP) gathers all problems for which an FPT (resp. XP) algorithm
exists. Proving the NP-hardness of a problem in the case where a parameter k
is bounded above by a constant immediately forbids the existence of any XP
(and thus FPT) algorithm unless P = NP. In this case, we will say that this
parameterized problem is para-NP-hard. A similar definition can be given using
coNP-hard and coNP instead of NP-hard and NP, respectively, leading to the
para-coNP-hard complexity class (and thus, if a problem is shown to be para-
coNP-hard, then it does not belong to XP unless P=coNP). In the following,
para-(co)NP-hard thus denotes the union of para-NP-hard and para-coNP-hard.
Finally, the W[i]-hierarchy of parameterized problems is typically used to rule
out the existence of an FPT algorithm, under the widely believed conjecture
that FPT 6= W[1]. For more details about fixed-parameter tractability, we refer
the reader to the recent monographs [3, 5].

1.3 Related work

As one might expect, the RCP〈〉 problem is strongly related to some known
combinatorial problems. Indeed, one can observe that RCP〈s = 0, d = 1〉 is
equivalent to the Set Cover problem, while RCP〈s = 0, t = ∞〉 can be re-
duced in a straightforward way from the Domatic Partition problem (in the
Domatic Partition problem, one asks whether a given graph admits k pair-
wise disjoint dominating sets). Li et al. [10] obtained several (mainly negative)
results for RCP〈〉 in some restricted cases which can be summarized by the
following theorem.

Theorem 1 ([10]). We have the following:
– RCP〈〉, RCP〈d = 1〉 and RCP〈t =∞〉 are NP-hard and are in2 coNPNP;
– RCP〈s = 0, d = 1〉, RCP〈s = 0, t =∞〉 are NP-hard;
– RCP〈d = 1, t =∞〉 can be solved in linear time.

1 Note that one can aggregate several parameters p1, . . . , pm by defining k = p1 + · · ·+
pm, in which case we will say the parameter is (p1, . . . , pm).

2 coNPNP is the set of problems whose complement can be solved by a non-
deterministic Turing machine having access to an oracle to a problem in NP.



In addition, they developed and implemented an algorithm for RCP〈〉 which
consists of(i) enumerating all subsets of at most s users, and (ii) for each such
subset S, determining the satisfaction of res(P, 0, d, t) for UR|U\S . Step (ii) is
achieved by a SAT formulation of the problem and the use of an off-the-shelf
SAT solver, while they develop a pruning strategy in order to avoid the entire
enumeration of all subsets of users of size at most s, resulting in an efficient
speed-up of step (i). Quite surprisingly, they observe that the bottleneck of their
algorithm lies in the second step, where an instance of RCP〈s = 0〉 has to be
solved. This motivated us to focus on the parameterized complexity of RCP〈s =
0〉 separately.

1.4 Contribution and organization of the paper

Our goal in this paper is thus to determine the parameterized complexity of
RCP〈〉 and RCP〈s = 0〉 with respect to parameters p, s, d, t, by considering
every possible combination of them. In each case, we aim at determining whether
the problem is(i) in FPT, (ii) in XP but W[i]-hard for some i ≥ 1, or (iii) para-
(co)NP-hard.

Figure 1 summarizes the (already known and) obtained results for RCP〈〉
and RCP〈s = 0〉 with respect to all possible combinations of the parameters
specified previously. An arrow A −→ B means that A is a larger parameter than
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Fig. 1: Schemas of the complexity of RCP〈s = 0〉 (left) and RCP〈〉 (right) after
the results obtained in this paper (see the end of this section for the difference
between old and new results).



B, in the sense that an FPT algorithm parameterized by B implies an FPT
algorithm parameterized by A, and, conversely, any negative result parameter-
ized by A implies the same negative result parameterized by B. Since (under
classical complexity assumptions) a decision problem is either in one of the pre-
vious cases (i), (ii) or (iii), one can observe that the parameterized complexity of
RCP〈s = 0〉 is now completely determined with respect to all possible combina-
tions of parameters p, d and t. Concerning the more general case RCP〈〉, one can
observe that only the case corresponding to the parameterization by p is missing
(recall that as we mentioned earlier, we may assume in any instance that t ≤ p,
implying that adding t in the parameter list is of no importance concerning the
membership in these complexity classes, both for positive or negative results).

The next section gathers all our results for the general case RCP〈〉, namely:
– membership in XP parameterized by (s, d, t) (Theorem 2),
– membership in FPT parameterized by (p, d) or (p, s) (Theorem 3),
– para-coNP-hardness parameterized by (d, t) (Theorem 4),
– para-NP-hardness parameterized by (s, t) (Theorem 5).

Note that the para-NP-hardness for (s, d) was already known (Theorem 1), as
well as the W[2]-hardness for (s, d, t) (see explanation in Section 2.2).

Section 3 gathers all our results for the restricted case RCP〈s = 0〉, namely:
– an FPT algorithm parameterized by (d, p) with an optimal running time

(under ETH) when d is fixed (Theorems 6 and 7),
– membership in FPT parameterized by p only (Theorem 8).

Note that the W[2]-hardness for (d, t) is inherited from RCP〈〉, while the XP
membership results from a brute-force enumeration of all subsets of users of size
dt. We also investigate in this section the question of data (user) reductions and
present positive and negative kernelization results depending on the considered
variant: RCP〈s = 0〉 or RCP〈s = 0, t =∞〉 (Theorem 10). We finally conclude
the paper in Section 4.

Due to space restrictions, some proofs (for theorems marked with a ?) were
omitted and can be found in [1].

2 The general case

2.1 Positive results

First, observe that there exists a simple XP algorithm for RCP〈〉 parameterized
by (s, d, t). Indeed, recall that the problem actually aims to check whether there
is a set S ⊆ U of size at most s such that for any set of teams V = {V1, . . . , Vd} we
have S∩U(V ) 6= ∅, and note that finding a set of teams is exactly the RCP〈s = 0〉
problem, which is in XP parameterized by (d, t), as said in Section 1.4. Hence,
since |U(V )| ≤ dt, by finding iteratively a set of teams and branching on each
element to be removed from it (and included in the future blocker set), one
can determine whether there exists a blocker set of size at most s in XP time
parameterized by (s, d, t):

Theorem 2. RCP〈〉 is in XP when parameterized by (s, d, t)



Despite its simplicity, this result is actually somehow tight. First, as we will
see later (Section 2.2), RCP〈〉 is W[2]-hard with this parameterization. In ad-
dition, considering a strict subset of {s, d, t} as a parameter makes the problem
para-(co)NP-hard (Theorems 1, 4 and 5). A way of going further is to “replace”
t by p (recall that we may assume t ≤ p). With this modification, we show in
the next result how to get rid of the parameter s or d by designing an FPT
algorithm parameterized by (p, d) or (p, s).

Theorem 3. RCP〈〉 is FPT when parameterized by (p,min{s, d}).

Proof. Without loss of generality, we may assume P = R as well as N(u) 6= ∅
for all u ∈ U . For all C ⊆ P , let UC = {u ∈ U : N(u) = C} (notice that we
might have UC = ∅ for some C ⊆ P ). Let S ⊆ U be a blocker set of size at most
s, i.e. a set whose removal makes res(P, 0, d, t) unsatisfiable. Moreover, assume
that S is a minimal blocker set, meaning that there does not exist S′ ( S such
that the removal of S′ makes res(P, 0, d, t) unsatisfiable.

Claim. For all C ⊆ P , UC ∩ S 6= ∅ implies that |UC \ S| < d.

Before proving the claim, notice that for all u ∈ UC ∩ S, there exists a set of
teams V = {V1, . . . , Vd} such that (i) U(V )∩S = {u}, and (ii) |U(V )∩UC | ≤ d.
Condition (i) comes from the minimality of S, while Condition (ii) comes from
the fact that otherwise, there would exist i ∈ [d] such that |Vi ∩ UC | ≥ 2, and
removing one user from Vi, arbitrarily chosen in (Vi∩UC)\{u}, produces another
set of teams V ′ with U(V ′) ( U(V ) (with exactly one element less) and still such
that V ∩ S = {u}. Applying this strategy iteratively, we can get a set of teams
V as desired.

Proof (of the claim). To do so, let u ∈ UC ∩ S and V = {V1, . . . , Vd} defined
as previously. If we have |UC \ S| ≥ d, then there exists v ∈ UC \ S such
that v /∈ U(V ) (since |U(V ) ∩ UC | ≤ d, and since u ∈ S ∩ UC , it follows that
|(UC \S)∩U(V )| ≤ d− 1), in which case we have that (U(V ) \ {u})∪ {v} is the
union of a set of teams which does not intersect S (recall that U(V )∩S = {u}),
and satisfies res(P, 0, d, t) (since N(u) = N(v)), a contradiction. ut

We now define a reduced set of users Ur ⊆ U composed of dC = min{|UC |, d}
users from UC chosen arbitrarily, for all C ⊆ P . By construction, observe that
|Ur| ≤ d2p. We also define, for all C ⊆ P , Ur

C = UC ∩ Ur. Finally, consider an
algorithm which outputs that res(P, s, d, t) is unsatisfiable if and only if there
exists a blocker set S ⊆ Ur of the instance induced by Ur (i.e. with authorization
policy UR|Ur ), and such that

∑
C⊆P ζS(C) ≤ s, where

ζS(C) =

{
|S ∩ Ur

C |+ |UC | − dC if S ∩ Ur
C 6= ∅

0 otherwise.

in which case we will say that S is a reduced blocker set. We will prove that this
algorithm is FPT parameterized by (p,min{s, d}), and is correct.



Concerning the running time, observe first that the construction of Ur as well
as the evaluation of ζS , given S ⊆ Ur, takes O∗(2p) time. Then, for any reduced
blocker set S ⊆ Ur, notice that |S∩Ur

C | ≤ min{s, d} for all C ⊆ P , and that any
set S′ ⊆ Ur such that |S′∩Ur

C | = |S∩Ur
C | for all C ⊆ P is also a reduced blocker

set (because N(u) = N(v) for all u, v ∈ C, for all C ⊆ P ). Hence, instead of
enumerating every possible subset S of Ur, it is sufficient to enumerate the sizes
of each intersection with Ur

C for all C ⊆ P , and pick the right number of users
in Ur

C in an arbitrary way. Since its intersection is of size at most min{s, d}, the
number of sets to enumerate is O((min{s, d} + 1)2

p

). Then, for each obtained
set S ⊆ Ur, we can check whether it is a blocker set of UR|Ur by solving the
RCP〈s = 0〉 problem on the instance UR|Ur\S in FPT time parameterized by p
(using, e.g., Theorem 8).

It now remains to prove its correctness, by proving that there exists a reduced
blocker set if and only if res(P, s, d, t) is unsatisfiable. If such a set S exists, then
define, for each C ⊆ P , a set SC ⊆ UC composed of S ∩ Ur

C plus all users in
UC \ Ur

C . By construction, |SC | = ζS(C), and thus S∗ =
⋃

C⊆P SC contains at
most s users. We now prove that S∗ is a blocker set: suppose by contradiction
that there exists a set of teams V = {V1, . . . , Vd} such that U(V ) ∩ S∗ = ∅. As
we saw previously, we may assume that |Vi ∩ UC | ≤ 1 for all i ∈ [d] and all
C ⊆ P . Let IV = {i ∈ [d] : Vi ∩ (UC \ Ur

C) 6= ∅}. We show that we can turn
V into another set of teams V ′ such that U(V ′) ⊆ Ur (i.e. such that IV ′ = ∅),
implying that S is not a reduced blocker set, a contradiction. If IV = ∅, then we
are done. Otherwise let i ∈ IV and u ∈ Vi ∩ (UC \ Ur

C). By construction of Ur,
there exists v ∈ Ur

C , and thus (V \ {u}) ∪ {v} is the union of a set of teams V ′

(recall that N(u) = N(v)) such that i /∈ IV ′ . Repeating this transformation at
most d times, we naturally obtain a set of teams V ′ such that IV ′ = ∅ as desired.

Conversely, suppose that res(P, s, d, t) is unsatisfiable, i.e. there exists a
blocker set of users S ⊆ U of size at most s. As previously, we may assume
that S is a minimal blocker set. We now use the previous Claim, and thus for
all C ⊆ P , |S ∩UC | ≥ max{0, |UC | − d+ 1}. Thus, we may assume, without loss
of generality (since, again, N(u) = N(v) for all u, v ∈ UC) that UC \ Ur

C ⊆ S.
Then, we define Sr = S \ (

⋃
C∈℘(C) UC \ Ur

C). Observe that for all C ⊆ P , we
have:

ζSr (C) = |Sr ∩ Ur
C |+ |UC | − dC

= |Sr ∩ Ur
C |+ |UC \ Ur

C |
= |S ∩ UC |

and thus
∑

C⊆P ζSr
(C) =

∑
C⊆P |S ∩ UC | = |S| ≤ s. Finally, Sr is indeed a

blocker set of the instance induced by Ur, since otherwise, there would exist a
set of teams V = {V1, . . . , Vd} with U(V ) ⊆ Ur such that U(V ) ∩ Sr = ∅, which
would imply that U(V ) ∩ S = ∅ as well, a contradiction. ut

2.2 Negative results

It is worth pointing out that the reduction of [10, Lemma 3] proving the NP-
hardness of RCP〈s = 0, d = 1〉 actually proves the W[2]-hardness of this problem



parameterized by t (from Set Cover parameterized by the size of the solution
[5]). Another implication of this reduction is the para-NP-hardness of RCP〈〉
when parameterized by (s, d). We now complement this result by showing that
RCP〈d = 1, t = τ〉 is coNP-hard for every fixed τ ≥ 3, implying para-coNP-
hardness of RCP〈〉 parameterized by (d, t). The result is obtained by a reduction
from the δ-Hitting Set problem for every δ ≥ 2.

Theorem 4 (?). RCP〈d = 1, t = τ〉 is coNP-hard for every fixed τ ≥ 3.

We also settle the case of RCP〈〉 parameterized by (s, t) (and thus RCP〈s =
0〉 parameterized by t). The result is obtained by a reduction from the 3-
Dimensional Matching problem.

Theorem 5 (?). RCP〈s = 0, t = 4〉 is NP-hard.

3 Refined positive results for the case s = 0

We now turn to the particular case where s = 0. As said in Section 1, one
motivation for studying this case is that it is the bottleneck of the algorithm of
Li et al. [10] for RCP〈〉. Hence, we believe that designing efficient algorithms
for this sub-case might help us solve much larger instances of RCP〈〉 than is
currently possible. To this end, we now provide a complete characterization of the
complexity when considering all possible combinations of parameters among p, d
and t. We also investigate the question of reduction rules within the framework
of kernelization, highlighting a difference of behavior between RCP〈s = 0〉 and
RCP〈s = 0, t =∞〉.

3.1 FPT algorithms

The first algorithm is a dynamic programming-based approach similar to the
one for Set Cover [5], in order to obtain an FPT algorithm for RCP〈s = 0〉
parameterized by (p, d). While this result was already known, given that RCP〈〉
is itself FPT with this parameterization (and that RCP〈s = 0〉 is actually FPT
parameterized by p only, as we will see in Theorem 8), we provide for RCP〈s = 0〉
a better running time. In particular, as we will see later, a previous known
reduction of Li et al. [10] actually proves that when d is fixed, the obtained
running time is the best we can hope for, under the Exponential Time Hypothesis
(ETH)3.

Theorem 6 (?). RCP〈s = 0〉 can be solved in O∗(2dp) time.

Li et al. [10] showed that RCP〈s = 0, t = ∞, d = 3〉 is NP-hard, by a
reduction from 3-Domatic Partition, which transforms a graph of n vertices
into an instance (U,R,UR, res(P, 0, 3,∞)) with |P | = n. Since a 2o(n) algorithm
for 3-Domatic Partition would violate the ETH (by a linear reduction from
SAT [2]), we have the following:

3 The ETH claims that SAT cannot be solved in O∗(2o(n)), where n is the number of
variables in the CNF formula [7].



Theorem 7. RCP〈s = 0, t = ∞, d = 3〉 cannot be solved in 2o(p) time unless
the ETH fails.

Hence, for fixed d, the algorithm described in Theorem 6 has an optimal
running time. We continue our quest for a better understanding of the frontier
between tractable and intractable cases of the RCP〈s = 0〉 problem. Given the
positive result parameterized by (p, d), a natural question is to consider each
parameter separately. The question can well be answered negatively concerning
the parameter d, since, as we saw before, RCP〈s = 0, d = 3, t =∞〉 is NP-hard
[10], and thus RCP〈s = 0〉 is para-NP-hard parameterized by d. However, we
are able to give a different answer for the parameter p only.

Theorem 8. RCP〈s = 0〉 is FPT when parameterized by p.

Proof. The result makes use of Lenstra’s celebrated algorithm [9] for Integer Lin-
ear Programming Feasibility (ILPF) parameterized by the number of variables.

Theorem 9 (Lenstra [9]). Whether a given ILP has a non-empty solution
set can be decided in O∗(f(n)) time for some computable function f , where n
denotes the number of variables of the ILP.

Note that this algorithm has been improved by Kannan [8], with f(n) = nO(n)

(but exponential space), and by Frank and Tardos [6] so that the algorithm runs
in polynomial space, and with f(n) = O(n2.5n+o(n)).

We thus give an ILPF formulation of the problem with a number of variables
depending on p and t. As we saw previously, since we may assume that t ≤
p in any positive instance, the result will follow (by Lenstra’s result) for the
parameterization by p only.

Let (U,R,UR, res(P, 0, d, t)) be the input instance of RCP〈s = 0〉. For any
N ⊆ P , let UN denote the set of users having neighborhood exactly N in P ,
or, formally: UN = {u ∈ U : N(u) = N}. Moreover, we define the following set
called configurations:

C =

{
{N1, . . . , Nb} : b ≤ t,Ni ⊆ P, i ∈ [b],

b⋃
i=1

Ni = P

}
.

For any N ⊆ P , we note

CN = {c = {N1, . . . , Nbc} ∈ C : N = Ni for some i ∈ [bc]}

the set of configurations involving N . Informally, a configuration {N1, . . . , Nb}
represents a way to dominate P , by picking one user in UNi

, for each i ∈ [b].
The variables of our ILP are in one-to-one correspondence with elements of C,

and will be denoted by {xc : c ∈ C}. Since C is of size bounded by O(
∑t

b=1 2bp),
the number of variables is bounded by a function of p and t only. Then, we define
the following two sets of constraints:
1.

∑
c∈C xc = d,

2.
∑

c∈CN
xc ≤ |UN | for all N ⊆ P .



We now explain the idea of the ILP. Observe that in a positive instance, there
always exists a set of teams in which in each set, each user has a different
neighborhood. For any T ⊆ U , define φ(T ) = {N(u) : u ∈ T}, the set of
neighborhoods of users in T . Then, by definition of the problem, for any set of
teams V = {T1, . . . , Td}, we have Φ(Ti) ∈ C for all i ∈ [d]. Notice that we might
have Φ(Ti) = Φ(Tj) for i, j ∈ [d], i 6= j. We can associate, with each such set
of teams, a vector XV = {xVc }c∈C , where xVc is the number of sets of V having
configuration c ∈ C. By the remark above, we might have XV = XV ′ for two
different sets of teams V and V ′, in which case we will say that these two sets
of teams are configuration-equivalent. Observe that given a vector X = {xc}c∈C
such that X = XV ∗ for a fixed set of teams V ∗, we can construct in polynomial
time a set of teams V that is configuration-equivalent to V ∗; constraints (1)
and (2) aim to find such a vector. Suppose that there exists a set of teams
V ∗ = {T1, . . . , Td} of the problem. It is clear that XV ∗ fulfills constraints (1)
and (2). Conversely, constraints in (1) ensure that the set of teams will contain d
sets, while constraints in (2) ensure that when constructing a set of configuration
c = {N1, . . . , Nbc}, there must exist a new user having neighborhood exactly Ni

for all i ∈ [bc] and that has not been already assigned to another set. ut

3.2 User reductions

We now focus on reduction rules which can be performed in polynomial time
and result in an equivalent instance having a smaller number of users. More
formally, we say that a (decision) problem has a kernel [5] of size f , for some
computable function f : N → N, if there exists a polynomial algorithm which,
given an instance x with parameter k, outputs an instance x′ of size |x′| with
parameter k′ such that: (i) k′ ≤ k, (ii) x is positive if and only if x′ is positive,
and (iii) |x′| ≤ f(k). In the case of RCP〈s = 0〉 our aim is thus to obtain an
equivalent instance with a number of users bounded by a function of d and t.

While the role of t was so far of less interest for the complexity of the problem,
we show that the problem behaves differently from the kernelization point of
view, depending on whether t =∞ or not. We first show that when t =∞, the
problem admits a kernel with at most dp users. To do so, we will make use of
the following:

Lemma 1 (d-expansion Lemma [3]). Let d ≥ 1 be a positive integer and
G = (A,B,E) be a bipartite graph with bipartition (A,B) and E ⊆ A× B such
that for all b ∈ B, N(b) 6= ∅. If |B| ≥ d|A|, then there exist non-empty vertex
sets X ⊆ A and Y ⊆ B which can be found in time polynomial in the size of G,
such that:
(i) N(Y ) ⊆ X, and

(ii) there is a d-expansion of X into Y : a collection M ⊆ E ∩ (X × Y ) such
that every vertex of X is incident to exactly d edges of M , and exactly d|X|
vertices of Y are incident to an edge of M .

Theorem 10. RCP〈s = 0, t =∞〉 admits a kernel with at most dp users.



Proof. Suppose we are given an instance of RCP〈s = 0, t = ∞〉. We present
two reduction rules which are used to decrease the number of users. For each of
these rules, we will prove that the instance is positive iff the reduced instance is
positive, in which case we will say that the rule is safe.

Reduction Rule 1: if there exists u ∈ U with N(u) = ∅, then delete u.

Proof (of safeness). Simply observe that such a user cannot participate in any
set of teams if the instance is positive, and, conversely, cannot turn a negative
instance into a positive one if it is deleted. ut

Reduction Rule 2: if there exist X ⊆ P , Y ⊆ U such that N(Y ) ⊆ X and
there is a d-expansion of X into Y , then delete X from P , Y from U , and
(Y ×X) ∩UR from UR.

Proof (of safeness). If the instance is a positive one, then there exists a set
of teams {V1, . . . , Vd}. Then, for all r ∈ P \ X, there does not exist u ∈ Y
such that (u, r) ∈ UR, since N(Y ) ⊆ X. Hence, N(Vi \ Y ) ⊇ P \ X, and thus
{V1 \ Y, . . . , Vd \ Y } is a set of teams for the reduced instance, which is thus a
positive one.

Conversely, suppose that the reduced instance is a positive one: there exist
V1, . . . , Vd, disjoints sets of users from U \ Y such that N(Vi) ⊇ P \ X. Since
there is a d-expansion of X into Y , for all r ∈ X, there exist ur1, . . . u

r
d ∈ Y such

that (uri , r) ∈ UR for all i ∈ [d], where uri 6= ur
′

i′ for all r 6= r′ and i 6= i′. Hence,
for all i ∈ [d], if we set V ′i = Vi ∪ {uri : r ∈ X}, we have V ′i ∩ V ′j = ∅ for all
1 ≤ i < j ≤ d, and N(V ′i ) ⊇ P for all i ∈ [d], and thus we have a positive
instance as well, which proves that the rule is safe. ut

Since each reduction rule can be applied in polynomial time, and since each
of them decreases the number of users by at least one, the algorithm runs in
polynomial time. Finally, by Lemma 1, if none of the previous reduction rules
applies, then |U | ≤ dp, and we thus have a kernel with at most dp users, as
desired. ut

As Li et al. [10] point out, RCP〈s = 0, d = 1〉 is equivalent to the Set
Cover Problem. Known kernel lower bounds for this problem [4] lead to the
following theorem, which is in sharp contrast to the previous case.

Theorem 11. RCP〈s = 0, d = 1〉 (and thus RCP〈s = 0〉) does not admit a
kernel with (p+ t)O(1) users, unless coNP ⊆ NP/poly.

4 Conclusion and future work

We considered RCP〈〉, a problem introduced recently in the area of access control
to analyze the resiliency of a system. Given the large number of natural param-
eters in an instance of this problem, and given that these parameters are likely
to take small values in practice, our goal was to provide a systematic analysis of



the complexity of the problem using the framework of parameterized complexity.
For all but one possible combination of the parameters, we were able to obtain
either a positive or negative result. We also considered a restricted variant of the
problem for which we settled the parameterized complexity of all possible com-
binations of the parameters. A first obvious idea of future work is thus to fill the
remaining hole of Figure 1, namely whether RCP〈〉 is in FPT, XP, W[1]-hard
or para-(co)NP-hard parameterized by p.

Another interesting further line of research would be to study resiliency as-
pects with respect to other problems. In the context of graphs for instance, we
could define the problem of determining whether upon removal of at most s ver-
tices, a given graph still satisfies some property given by another combinatorial
problem, e.g. having a vertex cover of size k. We believe that considering struc-
tural parameterizations (together with s) might lead to interesting new results.
As in our case, the complexity of such a new problem will certainly depend on
the complexity of the considered underlying problem (i.e. the case s = 0).
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