47 research outputs found

    The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities

    Get PDF
    We provide an overview of the design and capabilities of the near-infrared spectrograph (NIRSpec) onboard the James Webb Space Telescope. NIRSpec is designed to be capable of carrying out low-resolution (R ⁣=30 ⁣−330R\!=30\!-330) prism spectroscopy over the wavelength range 0.6−5.3â€‰âŁÂ ÎŒ0.6-5.3\!~\mum and higher resolution (R ⁣=500 ⁣−1340R\!=500\!-1340 or R ⁣=1320 ⁣−3600R\!=1320\!-3600) grating spectroscopy over 0.7−5.2â€‰âŁÂ ÎŒ0.7-5.2\!~\mum, both in single-object mode employing any one of five fixed slits, or a 3.1×\times3.2 arcsec2^2 integral field unit, or in multiobject mode employing a novel programmable micro-shutter device covering a 3.6×\times3.4~arcmin2^2 field of view. The all-reflective optical chain of NIRSpec and the performance of its different components are described, and some of the trade-offs made in designing the instrument are touched upon. The faint-end spectrophotometric sensitivity expected of NIRSpec, as well as its dependency on the energetic particle environment that its two detector arrays are likely to be subjected to in orbit are also discussed

    Reconciling carbon-cycle concepts, terminology, and methods

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 9 (2006): 1041-1050, doi:10.1007/s10021-005-0105-7.Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production

    Gravitational Lensing from a Spacetime Perspective

    Full text link

    Probennahmeverfahren fĂŒr Tetraalkylbleiverbindungen in Luft

    No full text

    Considerations on the modeling of photovoltaic systems for grid impact studies

    No full text
    Photovoltaic systems continue to be deployed at increasing levels and their impact on the electric grid needs to be evaluated more accurately. This includes the impact both in the local grid where they are connected and the impact on the operation of the whole system. As a consequence, adequate models of panels, inverters, and the rest of the grid are required. Models of photovoltaic systems need to characterize their dominant characteristics and effects on the electric grid for the different types of studies, i.e. load flow, harmonic distortion, voltage stability and electromagnetic transient studies. This paper gives an overview of models that are currently in use for different types of grid impact studies, and points to their applications and limitations

    Phytoplankton of Lake Kivu

    Full text link
    peer reviewedThis chapter reviews taxonomic composition, biomass, production and nutrient limitation of the phytoplankton of Lake Kivu. Present Lake Kivu phytoplankton is dominated by cyanobacteria – mainly Synechococcus spp. and thin filaments of Planktolyngbya limnetica – and by pennate diatoms, among which Nitzschia bacata and Fragilaria danica are dominant. Seasonal shifts occur, with cyanobacteria developing more in the rainy season, and the diatoms in the dry season. Other groups present are cryptophytes, chrysophytes, chlorophytes and dinoflagellates. According to a survey conducted in the period 2002–2008, the composition of the phytoplankton assemblage was quasi homogeneous among lake basins. The mean euphotic depth varied between 17 and 20 m, and the increase in the ratio between mixed layer depth and euphotic depth to about 2 in the dry season may have selected for diatoms and cryptophytes, which tended to present their maximal development in this season, when cyanobacteria slightly decreased. Mean chlorophyll a concentration was 2.16 mg m−3, and the mean daily primary production was 0.62 g C m−2 day−1 (range, 0.14–1.92), i.e. in the same range as in other large oligotrophic East African Rift lakes. Seston elemental ratios indicated a moderate P deficiency during the dry, mixed season and a severe P limitation during part of the rainy, stratified season; the C:N ratio indicated a moderate N limitation throughout the year. Nutrient addition assays pointed to a direct N limitation and co-limitation by P during rainy seasons and P or N limitation during dry seasons depending on the year. Thus, phytoplankton ecology in Lake Kivu does not differ from that of other Rift lakes, where seasonal variations result in a trade-off between low light with high nutrient supply and high light with low nutrient supply. Phytoplankton production in Lake Kivu is also similar to that of other Rift lakes, and nutrient limitation of phytoplankton growth may occur as a result of variable availability of N and P, as in Lakes Tanganyika and Malawi, even though the extent of P limitation seems greater in Lake Kivu

    Methane formation and future extraction in Lake Kivu

    No full text
    This chapter summarises the current knowledge on the vertical distribution of methane (CH4) and its formation in Lake Kivu. Additionally, we review the objectives and restrictions under consideration for sustainable extraction (safe, environmentally acceptable, and economically effective) of the enormous amount of CH4 from the lake. The harvested CH4 will be used to produce electricity which is desperately needed in both neighbouring countries: the Democratic Republic of the Congo and Rwanda. From a system-analysis point of view, the following processes need to be included as the minimum for adequately evaluating the vertical and temporal development of the lake CH4 during extraction: (1) in situ CH4 formation occurring in the permanently stratified, anoxic deep-water, (2) CH4 oxidation in the oxic surface water, (3) natural lake-water upwelling caused by subaquatic springs, (4) artificial lake-water up- and downwelling due to extraction- and reinjection-related flows, and (5) upward diffusion caused by double diffusive convection and weak turbulence. Water density is parameterised as a function of temperature, salinity, and the two gases carbon dioxide and CH4. For the sake of clarity of the presentation, we use a simplified 4-box analysis and are neglecting the diffusion process (5). This allows for the essence of the CH4 extraction challenge to be conveyed while avoiding excessive complexities. The system analysis for different CH4 extraction concepts clearly reveals that the depth of reinjection of the CH4-depleted deep-water is critical for the sustainability of the extraction and an optimal CH4 harvesting plan. Here, the suitability of different reinjection scenarios is compared by evaluating each of them in terms of the objectives "safety" (water column stability), "lake ecological integrity" (nutrient upward fluxes), and "economic viability" (amount of harvestable CH4). Comparison of model simulations, run over 50 years, revealed that (1) using lake surface (dilution) water for adjusting the density of the reinjection water and (2) reinjecting the nutrient-rich deep-water in the top 190 m are both unacceptable in terms of sustainability
    corecore