35 research outputs found

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion

    Realizability of the Lorentzian (n,1)-Simplex

    Full text link
    In a previous article [JHEP 1111 (2011) 072; arXiv:1108.4965] we have developed a Lorentzian version of the Quantum Regge Calculus in which the significant differences between simplices in Lorentzian signature and Euclidean signature are crucial. In this article we extend a central result used in the previous article, regarding the realizability of Lorentzian triangles, to arbitrary dimension. This technical step will be crucial for developing the Lorentzian model in the case of most physical interest: 3+1 dimensions. We first state (and derive in an appendix) the realizability conditions on the edge-lengths of a Lorentzian n-simplex in total dimension n=d+1, where d is the number of space-like dimensions. We then show that in any dimension there is a certain type of simplex which has all of its time-like edge lengths completely unconstrained by any sort of triangle inequality. This result is the d+1 dimensional analogue of the 1+1 dimensional case of the Lorentzian triangle.Comment: V1: 15 pages, 2 figures. V2: Minor clarifications added to Introduction and Discussion sections. 1 reference updated. This version accepted for publication in JHEP. V3: minor updates and clarifications, this version closely corresponds to the version published in JHE

    On the physical mechanism underlying Asymptotic Safety

    Full text link
    We identify a simple physical mechanism which is at the heart of Asymptotic Safety in Quantum Einstein Gravity (QEG) according to all available effective average action-based investigations. Upon linearization the gravitational field equations give rise to an inverse propagator for metric fluctuations comprising two pieces: a covariant Laplacian and a curvature dependent potential term. By analogy with elementary magnetic systems they lead to, respectively, dia- and paramagnetic-type interactions of the metric fluctuations with the background gravitational field. We show that above 3 spacetime dimensions the gravitational antiscreening occurring in QEG is entirely due to a strong dominance of the ultralocal paramagnetic interactions over the diamagnetic ones that favor screening. (Below 3 dimensions both the dia- and paramagnetic effects support antiscreening.) The spacetimes of QEG are interpreted as a polarizable medium with a "paramagnetic" response to external perturbations, and similarities with the vacuum state of Yang-Mills theory are pointed out. As a by-product, we resolve a longstanding puzzle concerning the beta function of Newton's constant in 2+{\epsilon} dimensional gravity.Comment: 43 pages, 8 figures; clarifying remarks added; to appear in JHE

    Infrared fixed point in quantum Einstein gravity

    Get PDF
    We performed the renormalization group analysis of the quantum Einstein gravity in the deep infrared regime for different types of extensions of the model. It is shown that an attractive infrared point exists in the broken symmetric phase of the model. It is also shown that due to the Gaussian fixed point the IR critical exponent ν\nu of the correlation length is 1/2. However, there exists a certain extension of the model which gives finite correlation length in the broken symmetric phase. It typically appears in case of models possessing a first order phase transitions as is demonstrated on the example of the scalar field theory with a Coleman-Weinberg potential.Comment: 9 pages, 7 figures, final version, to appear in JHE

    Bubbles and jackets: new scaling bounds in topological group field theories

    Get PDF
    We use a reformulation of topological group field theories in 3 and 4 dimensions in terms of variables associated to vertices, in 3d, and edges, in 4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4 dimensions, we obtain a bubble bound proving the suppression of singular topologies with respect to the first terms in the perturbative expansion (in the cut-off). We also prove a new, stronger jacket bound than the one currently available in the literature. We expect these results to be relevant for other tensorial field theories of this type, as well as for group field theory models for 4d quantum gravity.Comment: v2: Minor modifications to match published versio

    The transfer matrix in four-dimensional CDT

    Get PDF
    The Causal Dynamical Triangulation model of quantum gravity (CDT) has a transfer matrix, relating spatial geometries at adjacent (discrete lattice) times. The transfer matrix uniquely determines the theory. We show that the measurements of the scale factor of the (CDT) universe are well described by an effective transfer matrix where the matrix elements are labeled only by the scale factor. Using computer simulations we determine the effective transfer matrix elements and show how they relate to an effective minisuperspace action at all scales.Comment: 32 pages, 19 figure

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe

    Get PDF
    In three spacetime dimensions, general relativity drastically simplifies, becoming a ``topological'' theory with no propagating local degrees of freedom. Nevertheless, many of the difficult conceptual problems of quantizing gravity are still present. In this review, I summarize the rather large body of work that has gone towards quantizing (2+1)-dimensional vacuum gravity in the setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms, additions, missing references welcome; v2: minor changes, added reference
    corecore