3,629 research outputs found
Preserving reproductive capacity in young boys with cancer
In this article, the authors explore the possibilities and particular developmental and ethical issues surrounding sperm cryopreservation in young boys with cancer, and examine the unique legal implications of fertility counselling in adolescence
Effect of farnesyltransferase inhibitor R115777 on mitochondria of plasmodium falciparum
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (Delta psi m) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.1133Ysciescopu
The Web of Human Sexual Contacts
Many ``real-world'' networks are clearly defined while most ``social''
networks are to some extent subjective. Indeed, the accuracy of
empirically-determined social networks is a question of some concern because
individuals may have distinct perceptions of what constitutes a social link.
One unambiguous type of connection is sexual contact. Here we analyze data on
the sexual behavior of a random sample of individuals, and find that the
cumulative distributions of the number of sexual partners during the twelve
months prior to the survey decays as a power law with similar exponents for females and males. The scale-free nature of the web of human
sexual contacts suggests that strategic interventions aimed at preventing the
spread of sexually-transmitted diseases may be the most efficient approach.Comment: 7 pages with 2 eps figures. Latex file. For more details or for
downloading the PDF file of the published article see
http://polymer.bu.edu/~amaral/WebofContacts.html . For more results on teh
structure of complex networks see http://polymer.bu.edu/~amaral/Networks.htm
Crossover from mesoscopic to universal phase for electron transmission in quantum dots
Measuring phase in coherent electron systems (mesoscopic systems) provides
ample information not easily revealed by conductance measurements. Phase
measurements in relatively large quantum dots (QDs) recently demonstrated a
universal like phase evolution independent of dot size, shape, and occupancy.
Explicitly, in Coulomb blockaded QDs the transmission phase increased
monotonically by pi throughout each conductance peak, thereafter, in the
conductance valleys the phase returned sharply to its base value. Expected
mesoscopic features in the phase, related to spin degeneracy or to exchange
effects, were never observed. Presently, there is no satisfactory full
explanation for the observed phase universality. Unfortunately, the phase in a
few-electron QDs, where it can be better understood was never measured. Here we
report on such measurements on a small QD that occupy only 1-20 electrons. Such
dot was embedded in one arm of a two path electron interferometer, with an
electron counter near the dot. Unlike the repetitive behavior found in larger
dots we found now mesoscopic features for dot occupation of less than some 10
electrons. An unexpected feature in this regime is a clear observation of the
occupation of two different orbital states by the first two electrons -
contrary to the recent publications. As the occupation increased the phase
evolved and turned universal like for some 14 electrons and higher. The present
measurements allowed us to determine level occupancy and parity. More
importantly, they suggest that QDs go through a phase transition, from
mesoscopic to universal like behavior, as the occupancy increases. These
measurements help in singling out potential few theoretical models among the
many proposed.Comment: 12 pages, 6 figure
Driven coherent oscillations of a single electron spin in a quantum dot
The ability to control the quantum state of a single electron spin in a
quantum dot is at the heart of recent developments towards a scalable
spin-based quantum computer. In combination with the recently demonstrated
exchange gate between two neighbouring spins, driven coherent single spin
rotations would permit universal quantum operations. Here, we report the
experimental realization of single electron spin rotations in a double quantum
dot. First, we apply a continuous-wave oscillating magnetic field, generated
on-chip, and observe electron spin resonance in spin-dependent transport
measurements through the two dots. Next, we coherently control the quantum
state of the electron spin by applying short bursts of the oscillating magnetic
field and observe about eight oscillations of the spin state (so-called Rabi
oscillations) during a microsecond burst. These results demonstrate the
feasibility of operating single-electron spins in a quantum dot as quantum
bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary
materia
Chapter 11a: Pituitary and hypothalamic tumour syndromes in childhood
Central nervous system (CNS) tumours are the second commonest childhood malignancy. and survial has increased as a result of improved multimodality cancer therapies and better supportive care. Measurements of PRL, AFP and β-hCG are essential prior to commencement of any therapy. Craniopharyngiomas and low grade gliomas account for most tumors, while pituitary adenomas are rare. Non-neoplastic masses include pituitary hyperplasia and Rathke’s cleft cysts. Neurological syndromes and endocrine dysfunction must be recognized both before treatment and after. Both the original tumor and its treatment may disturb GH secretion, cause gonadotophin deficiency, or Posterior Pituitary Dysfunction, and less commonly reduce thyroid or adrenal function. The “hypothalamic syndrome” including variable hypothalamic dysfunction and morbid obesity is a common sequelae of surgical treatment, presumably caused by dysregulation of anorexigenic and orexigenic hormone signals
Modeling the dynamics of glacial cycles
This article is concerned with the dynamics of glacial cycles observed in the geological record of the Pleistocene Epoch. It focuses on a conceptual model proposed by Maasch and Saltzman [J. Geophys. Res.,95, D2 (1990), pp. 1955-1963], which is based on physical arguments and emphasizes the role of atmospheric CO2 in the generation and persistence of periodic orbits (limit cycles). The model consists of three ordinary differential equations with four parameters for the anomalies of the total global ice mass, the atmospheric CO2 concentration, and the volume of the North Atlantic Deep Water (NADW). In this article, it is shown that a simplified two-dimensional symmetric version displays many of the essential features of the full model, including equilibrium states, limit cycles, their basic bifurcations, and a Bogdanov-Takens point that serves as an organizing center for the local and global dynamics. Also, symmetry breaking splits the Bogdanov-Takens point into two, with different local dynamics in their neighborhoods
Integrating microalgae production with anaerobic digestion: a biorefinery approach
This is the peer reviewed version of the following article: [Uggetti, E. , Sialve, B. , Trably, E. and Steyer, J. (2014), Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioprod. Bioref, 8: 516-529. doi:10.1002/bbb.1469], which has been published in final form at https://doi.org/10.1002/bbb.1469. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingIn the energy and chemical sectors, alternative production chains should be considered in order to simultaneously reduce the dependence on oil and mitigate climate change. Biomass is probably the only viable alternative to fossil resources for production of liquid transportation fuels and chemicals since, besides fossils, it is one of the only available sources of carbon-rich material on Earth. Over recent years, interest in microalgae biomass has grown in both fundamental and applied research fields. The biorefinery concept includes different technologies able to convert biomass into added-value chemicals, products (food and feed) and biofuels (biodiesel, bioethanol, biohydrogen). As in oil refinery, a biorefinery aims at producing multiple products, maximizing the value derived from differences in biomass components, including microalgae. This paper provides an overview of the various microalgae-derived products, focusing on anaerobic digestion for conversion of microalgal biomass into methane. Special attention is paid to the range of possible inputs for anaerobic digestion (microalgal biomass and microalgal residue after lipid extraction) and the outputs resulting from the process (e.g. biogas and digestate). The strong interest in microalgae anaerobic digestion lies in its ability to mineralize microalgae containing organic nitrogen and phosphorus, resulting in a flux of ammonium and phosphate that can then be used as substrate for growing microalgae or that can be further processed to produce fertilizers. At present, anaerobic digestion outputs can provide nutrients, CO2 and water to cultivate microalgae, which in turn, are used as substrate for methane and fertilizer generation.Peer ReviewedPostprint (author's final draft
Exoplanets and SETI
The discovery of exoplanets has both focused and expanded the search for
extraterrestrial intelligence. The consideration of Earth as an exoplanet, the
knowledge of the orbital parameters of individual exoplanets, and our new
understanding of the prevalence of exoplanets throughout the galaxy have all
altered the search strategies of communication SETI efforts, by inspiring new
"Schelling points" (i.e. optimal search strategies for beacons). Future efforts
to characterize individual planets photometrically and spectroscopically, with
imaging and via transit, will also allow for searches for a variety of
technosignatures on their surfaces, in their atmospheres, and in orbit around
them. In the near-term, searches for new planetary systems might even turn up
free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor
additions and modification
- …
