2,897 research outputs found
A generalization of the q-Saalschutz sum and the Burge transform
A generalization of the q-(Pfaff)-Saalschutz summation formula is proved.
This implies a generalization of the Burge transform, resulting in an
additional dimension of the ``Burge tree''. Limiting cases of our summation
formula imply the (higher-level) Bailey lemma, provide a new decomposition of
the q-multinomial coefficients, and can be used to prove the Lepowsky and Primc
formula for the A_1^{(1)} string functions.Comment: 18 pages, AMSLaTe
Molecular dynamics simulations of oscillatory Couette flows with slip boundary conditions
The effect of interfacial slip on steady-state and time-periodic flows of
monatomic liquids is investigated using non-equilibrium molecular dynamics
simulations. The fluid phase is confined between atomically smooth rigid walls,
and the fluid flows are induced by moving one of the walls. In steady shear
flows, the slip length increases almost linearly with shear rate. We found that
the velocity profiles in oscillatory flows are well described by the Stokes
flow solution with the slip length that depends on the local shear rate.
Interestingly, the rate dependence of the slip length obtained in steady shear
flows is recovered when the slip length in oscillatory flows is plotted as a
function of the local shear rate magnitude. For both types of flows, the
friction coefficient at the liquid-solid interface correlates well with the
structure of the first fluid layer near the solid wall.Comment: 31 pages, 11 figure
Theory of Star Formation
We review current understanding of star formation, outlining an overall
theoretical framework and the observations that motivate it. A conception of
star formation has emerged in which turbulence plays a dual role, both creating
overdensities to initiate gravitational contraction or collapse, and countering
the effects of gravity in these overdense regions. The key dynamical processes
involved in star formation -- turbulence, magnetic fields, and self-gravity --
are highly nonlinear and multidimensional. Physical arguments are used to
identify and explain the features and scalings involved in star formation, and
results from numerical simulations are used to quantify these effects. We
divide star formation into large-scale and small-scale regimes and review each
in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and
their substructures. Important problems include how GMCs form and evolve, what
determines the star formation rate (SFR), and what determines the initial mass
function (IMF). Small scales range from dense cores to the protostellar systems
they beget. We discuss formation of both low- and high-mass stars, including
ongoing accretion. The development of winds and outflows is increasingly well
understood, as are the mechanisms governing angular momentum transport in
disks. Although outstanding questions remain, the framework is now in place to
build a comprehensive theory of star formation that will be tested by the next
generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission
statement adde
Stress induced polarization of immune-neuroendocrine phenotypes in Gallus gallus
Immune-neuroendocrine phenotypes (INPs) stand for population subgroups differing in immune-neuroendocrine interactions. While mammalian INPs have been characterized thoroughly in rats and humans, avian INPs were only recently described in Coturnix coturnix (quail). To assess the scope of this biological phenomenon, herein we characterized INPs in Gallus gallus (a domestic hen strain submitted to a very long history of strong selective breeding pressure) and evaluated whether a social chronic stress challenge modulates the individuals’ interplay affecting the INP subsets and distribution. Evaluating plasmatic basal corticosterone, interferon-γ and interleukin-4 concentrations, innate/acquired leukocyte ratio, PHA-P skin-swelling and induced antibody responses, two opposite INP profiles were found: LEWIS-like (15% of the population) and FISCHER-like (16%) hens. After chronic stress, an increment of about 12% in each polarized INP frequency was found at expenses of a reduction in the number of birds with intermediate responses. Results show that polarized INPs are also a phenomenon occurring in hens. The observed inter-individual variation suggest that, even after a considerable selection process, the population is still well prepared to deal with a variety of immune-neuroendocrine challenges. Stress promoted disruptive effects, leading to a more balanced INPs distribution, which represents a new substrate for challenging situations.Fil: Nazar, Franco Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Estevez, Inma. Centro de Investigación. Neiker - Tecnalia; EspañaFil: Correa, Silvia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin
Activity and social interactions in a wideranging specialist scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animalborne video collars
Observing animals directly in the field provides the most accurate understanding of animal behaviour and resource selection. However, making prolonged observation of undisturbed animals is difficult or impossible for many species. To overcome this problem for the Tasmanian devil (Sarcophilus harrisii), a cryptic and nocturnal carnivore, we developed animal-borne video collars to investigate activity patterns, foraging behaviour and social interactions. We collected 173 hours of footage from 13 individual devils between 2013 and 2017. Devils were active mostly at night, and resting was the most common behaviour in all diel periods. Devils spent more time scavenging than hunting and exhibited opportunistic and flexible foraging behaviours. Scavenging occurred mostly in natural vegetation but also in anthropogenic vegetation and linear features (roads and fence lines). Scavenging frequency was inversely incremental with size e.g. small carcasses were scavenged most frequently. Agonistic interactions with conspecifics occurred most often when devils were traveling but also occurred over carcasses or dens. Interactions generally involved vocalisations and brief chases without physical contact. Our results highlight the importance of devils as a scavenger in the Tasmanian ecosystem, not just of large carcasses for which devils are well known but in cleaning up small items of carrion in the bush. Our results also show the complex nature of intraspecific interactions, revealing greater detail on the context in which interactions occur. In addition, this study demonstrates the benefits of using animal-borne imaging in quantifying behaviour of elusive, nocturnal carnivores not previously seen using conventional field methods
Quantum Convolutional Neural Networks
We introduce and analyze a novel quantum machine learning model motivated by
convolutional neural networks. Our quantum convolutional neural network (QCNN)
makes use of only variational parameters for input sizes of
qubits, allowing for its efficient training and implementation on realistic,
near-term quantum devices. The QCNN architecture combines the multi-scale
entanglement renormalization ansatz and quantum error correction. We explicitly
illustrate its potential with two examples. First, QCNN is used to accurately
recognize quantum states associated with 1D symmetry-protected topological
phases. We numerically demonstrate that a QCNN trained on a small set of
exactly solvable points can reproduce the phase diagram over the entire
parameter regime and also provide an exact, analytical QCNN solution. As a
second application, we utilize QCNNs to devise a quantum error correction
scheme optimized for a given error model. We provide a generic framework to
simultaneously optimize both encoding and decoding procedures and find that the
resultant scheme significantly outperforms known quantum codes of comparable
complexity. Finally, potential experimental realization and generalizations of
QCNNs are discussed.Comment: 12 pages, 11 figures. v2: New application to optimizing quantum error
correction codes, added sample complexity analysis, more details for
experimental realizations, and other minor revision
Quantifying the real life risk profile of inhaled corticosteroids in COPD by record linkage analysis
BACKGROUND: Inhaled corticosteroids (ICS), especially when prescribed in combination with long-acting β(2) agonists have been shown to improve COPD outcomes. Although there is consistent evidence linking ICS with adverse effects such as pneumonia, the complete risk profile is unclear with conflicting evidence on any association between ICS and the incidence or worsening of existing diabetes, cataracts and fractures. We investigated this using record linkage in a Dundee COPD population. METHODS: A record linkage study linking COPD and diabetes datasets with prescription, hospitalisation and mortality data via a unique Community Health Index (CHI) number. A Cox regression model was used to determine the association between ICS use and new diabetes or worsening of existing diabetes and hospitalisations for pneumonia, fractures or cataracts after adjusting for potential confounders. A time dependent analysis of exposure comparing time on versus off ICS was used to take into account patients changing their exposure status during follow-up and to prevent immortal time bias. RESULTS: 4305 subjects (3243 exposed to ICS, total of 17,229 person-years of exposure and 1062 non exposed, with a follow-up of 4,508 patient-years) were eligible for the study. There were 239 cases of new diabetes (DM) and 265 cases of worsening DM, 550 admissions for pneumonia, 288 hospitalisations for fracture and 505 cataract related admissions. The hazard ratio for the association between cumulative ICS and outcomes were 0.70 (0.43-1.12), 0.57 (0.24-1.37), 1.38 (1.09-1.74), 1.08 (0.73-1.59) and 1.42 (1.07-1.88) after multivariate analysis respectively. CONCLUSION: The use of ICS in our cohort was not associated with new onset of diabetes, worsening of existing diabetes or fracture hospitalisation. There was however an association with increased cataracts and pneumonia hospitalisations
Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies
Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1s dsDNA genome consists of 163,095bp and encodes 271 proteins, exhibiting low DNA (10kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). RL contributed to the genome sequencing analysis, supported by the KU Leuven GOA Grant ‘Phage Biosystems’. JP acknowledges the project R-3986 of the Herculesstichting.info:eu-repo/semantics/publishedVersio
Effect of sampling effort and sampling frequency on the composition of the planktonic crustacean assemblage: a case study of the river Danube
Although numerous studies have focused
on the seasonal dynamics of riverine zooplankton,
little is known about its short-term
variation. In order to examine the effects of sampling
frequency and sampling effort, microcrustacean
samples were collected at daily intervals
between 13 June and 21 July of 2007 in a parapotamal
side arm of the river Danube, Hungary.
Samples were also taken at biweekly intervals
from November 2006 to May 2008. After presenting
the community dynamics, the effect of
sampling effort was evaluated with two different
methods; the minimal sample size was also estimated.
We introduced a single index (potential
dynamic information loss; to determine the potential
loss of information when sampling frequency
is reduced. The formula was calculated for the total abundance, densities of the dominant taxa, adult/larva ratios of copepods and for two different diversity measures. Results suggest that abundances may experience notable fluctuations even within 1 week, as do diversities and adult/larva ratios
Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions
Functional traits are expected to modulate plant competitive dynamics. However, how traits
and their plasticity in response to contrasting environments connect with the mechanisms
determining species coexistence remains poorly understood. Here, we couple field experiments
under two contrasting climatic conditions to a plant population model describing
competitive dynamics between 10 annual plant species in order to evaluate how 19 functional
traits, covering physiological, morphological and reproductive characteristics, are associated
with species’ niche and fitness differences. We find a rich diversity of univariate and multidimensional
associations, which highlight the primary role of traits related to water- and lightuse-
efficiency for modulating the determinants of competitive outcomes. Importantly, such
traits and their plasticity promote species coexistence across climatic conditions by enhancing
stabilizing niche differences and by generating competitive trade-offs between species.
Our study represents a significant advance showing how leading dimensions of plant function
connect to the mechanisms determining the maintenance of biodiversity
- …
