1,936 research outputs found
A scanning drift tube apparatus for spatio-temporal mapping of electron swarms
A "scanning" drift tube apparatus, capable of mapping of the spatio-temporal
evolution of electron swarms, developing between two plane electrodes under the
effect of a homogeneous electric field, is presented. The electron swarms are
initiated by photoelectron pulses and the temporal distributions of the
electron flux are recorded while the electrode gap length (at a fixed electric
field strength) is varied. Operation of the system is tested and verified with
argon gas, the measured data are used for the evaluation of the electron bulk
drift velocity. The experimental results for the space-time maps of the
electron swarms - presented here for the first time - also allow clear
observation of deviations from hydrodynamic transport. The swarm maps are also
reproduced by particle simulations
Force Dependence of the Michaelis Constant in a Two-State Ratchet Model for Molecular Motors
We present a quantitative analysis of recent data on the kinetics of ATP
hydrolysis, which has presented a puzzle regarding the load dependence of the
Michaelis constant. Within the framework of coarse grained two-state ratchet
models, our analysis not only explains the puzzling data, but provides a
modified Michaelis law, which could be useful as a guide for future
experiments.Comment: 4 pages, 3 eps figures, accepted for publication on Physical Review
Letter
Diamagnetic susceptibility of spin-triplet ferromagnetic superconductors
We calculate the diamagnetic susceptibility in zero external magnetic field
above the phase transition from ferromagnetic phase to phase of coexistence of
ferromagnetic order and unconventional superconductivity. For this aim we use
generalized Ginzburg-Landau free energy of unconventional ferromagnetic
superconductor with spin-triplet electron pairing. A possible application of
the result to some intermetallic compounds is briefly discussed.Comment: 7 pages, 1 figur
The effect of lameness before and during the breeding season on fertility in 10 pasture-based Irish dairy herd
Background: The effects of lameness on fertility have been documented frequently but few data are available from seasonally breeding, pasture-based herds (such as those used in Ireland) where cows are housed during the winter months but managed at pasture for the remainder of the year. This study determined the prevalence of lameness in a group of 786 cows in 10 pasture-based Irish dairy herds before, during and after the breeding season and assessed the relationship between lameness and the reproductive performance in these herds through serial locomotion scoring during the grazing period.
Results: Lameness prevalences of 11.6 % before, 14.6 % during and 11.6 % after the breeding season were found and these compared favourably to results from housed cattle and are similar to other studies carried out in grazing herds. A Cox proportional hazards model with locomotion score as time varying covariate was used. After controlling for the effect of farm, month of calving, body condition score at calving, body condition score loss after calving and economic breeding index, cows identified as lame during the study were less likely to become pregnant. Cows lame before the earliest serve date but no longer lame during the breeding season, cows becoming lame after the earliest serve date and cows identified lame both before and after this date were respectively 12 %, 35 % and 38 % less likely to become pregnant compared to cows never observed lame during the study. However, these findings were only significant for cows becoming lame after the earliest serve date and cows lame both before and after the start of breeding.
Conclusions: This study found that the reproductive efficiency was significantly (p 0.05) lower in these animals compared to cows never diagnosed as lame. In addition to lameness status, nutritional status and genetics were found to influence the reproductive performance in pasture-based Irish dairy herds
Drying and cracking mechanisms in a starch slurry
Starch-water slurries are commonly used to study fracture dynamics. Drying
starch-cakes benefit from being simple, economical, and reproducible systems,
and have been used to model desiccation fracture in soils, thin film fracture
in paint, and columnar joints in lava. In this paper, the physical properties
of starch-water mixtures are studied, and used to interpret and develop a
multiphase transport model of drying. Starch-cakes are observed to have a
nonlinear elastic modulus, and a desiccation strain that is comparable to that
generated by their maximum achievable capillary pressure. It is shown that a
large material porosity is divided between pore spaces between starch grains,
and pores within starch grains. This division of pore space leads to two
distinct drying regimes, controlled by liquid and vapor transport of water,
respectively. The relatively unique ability for drying starch to generate
columnar fracture patterns is shown to be linked to the unusually strong
separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments
Drying and cracking mechanisms in a starch slurry
Starch-water slurries are commonly used to study fracture dynamics. Drying
starch-cakes benefit from being simple, economical, and reproducible systems,
and have been used to model desiccation fracture in soils, thin film fracture
in paint, and columnar joints in lava. In this paper, the physical properties
of starch-water mixtures are studied, and used to interpret and develop a
multiphase transport model of drying. Starch-cakes are observed to have a
nonlinear elastic modulus, and a desiccation strain that is comparable to that
generated by their maximum achievable capillary pressure. It is shown that a
large material porosity is divided between pore spaces between starch grains,
and pores within starch grains. This division of pore space leads to two
distinct drying regimes, controlled by liquid and vapor transport of water,
respectively. The relatively unique ability for drying starch to generate
columnar fracture patterns is shown to be linked to the unusually strong
separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments
Fluctuating-friction molecular motors
We show that the correlated stochastic fluctuation of the friction
coefficient can give rise to long-range directional motion of a particle
undergoing Brownian random walk in a constant periodic energy potential
landscape. The occurrence of this motion requires the presence of two
additional independent bodies interacting with the particle via friction and
via the energy potential, respectively, which can move relative to each other.
Such three-body system generalizes the classical Brownian ratchet mechanism,
which requires only two interacting bodies. In particular, we describe a simple
two-level model of fluctuating-friction molecular motor that can be solved
analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt.
Phys. Mater. vol. 9, 157] this model has been first applied to understanding
the fundamental mechanism of the photoinduced reorientation of dye-doped liquid
crystals. Applications of the same idea to other fields such as molecular
biology and nanotechnology can however be envisioned. As an example, in this
paper we work out a model of the actomyosin system based on the
fluctuating-friction mechanism.Comment: to be published in J. Physics Condensed Matter
(http://www.iop.org/Journals/JPhysCM
Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors
We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in
the disordered systems. We analyze the microscopic model, in which the d-wave
superconductivity is stabilized near the antiferromagnetic quantum critical
point, and investigate two kinds of disorder, namely, box disorder and point
disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial
structure of modulated superconducting order parameter and the magnetic
properties in the disordered FFLO state are investigated. We point out the
possibility of "FFLO glass" state in the presence of strong point disorders,
which arises from the configurational degree of freedom of FFLO nodal plane.
The distribution function of local spin susceptibility is calculated and its
relation to the FFLO nodal plane is clarified. We discuss the NMR measurements
for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with
Exotic Symmetries
A Model for Superconductivity in Ferromagnetic ZrZn2
This article proposes that superconductivity in the ferromagnetic state of
ZrZn is stabilized by an exchange-type interaction between the magnetic
moments of triplet-state Cooper pairs and the ferromagnetic magnetization
density. This explains why superconductivity occurs in the ferromagnetic state
only, and why it persists deep into the ferromagnetic state. The model of this
article also yields a particular order parameter symmetry, which is a
prediction that can be checked experimentally.Comment: 4 pages, revised version accepted in PR
- …