20,369 research outputs found

    Laser velocimetry technique applied to the Langley 0.3 meter transonic cryogenic tunnel

    Get PDF
    A low power laser velocimeter operating in the forward scatter mode was used to measure free stream mean velocities in the Langley 0.3 Meter Transonic Cryogenic Tunnel. Velocity ranging from 51 to 235 m/s was measured. Measurements were obtained for a variety of nominal tunnel conditions: Mach numbers from 0.20 to 0.77, total temperatures from 100 to 250 K, and pressures from 101 to 152 kPa. Particles were not injected to augment the existing Mie scattering materials. Liquid nitrogen droplets were the existing liqht scattering material. Tunnel vibrations and thermal effects had no detrimental effects on the optical system

    Curvature and Acoustic Instabilities in Rotating Fluid Disks

    Get PDF
    The stability of a rotating fluid disk to the formation of spiral arms is studied in the tightwinding approximation in the linear regime. The dispersion relation for spirals that was derived by Bertin et al. is shown to contain a new, acoustic instability beyond the Lindblad resonances that depends only on pressure and rotation. In this regime, pressure and gravity exchange roles as drivers and inhibitors of spiral wave structures. Other instabilities that are enhanced by pressure are also found in the general dispersion relation by including higher order terms in the small parameter 1/kr for wavenumber k and radius r. These instabilities are present even for large values of Toomre's parameter Q. Unstable growth rates are determined in four cases: a self-gravitating disk with a flat rotation curve, a self-gravitating disk with solid body rotation, a non-self-gravitating disk with solid body rotation, and a non-self-gravitating disk with Keplerian rotation. The most important application appears to be as a source of spiral structure, possibly leading to accretion in non-self-gravitating disks, such as some galactic nuclear disks, disks around black holes, and proto-planetary disks. All of these examples have short orbital times so the unstable growth time can be small.Comment: 30 pages, 5 figures, scheduled for ApJ 520, August 1, 199

    A computer-assisted motivational social network intervention to reduce alcohol, drug and HIV risk behaviors among Housing First residents.

    Get PDF
    BackgroundIndividuals transitioning from homelessness to housing face challenges to reducing alcohol, drug and HIV risk behaviors. To aid in this transition, this study developed and will test a computer-assisted intervention that delivers personalized social network feedback by an intervention facilitator trained in motivational interviewing (MI). The intervention goal is to enhance motivation to reduce high risk alcohol and other drug (AOD) use and reduce HIV risk behaviors.Methods/designIn this Stage 1b pilot trial, 60 individuals that are transitioning from homelessness to housing will be randomly assigned to the intervention or control condition. The intervention condition consists of four biweekly social network sessions conducted using MI. AOD use and HIV risk behaviors will be monitored prior to and immediately following the intervention and compared to control participants' behaviors to explore whether the intervention was associated with any systematic changes in AOD use or HIV risk behaviors.DiscussionSocial network health interventions are an innovative approach for reducing future AOD use and HIV risk problems, but little is known about their feasibility, acceptability, and efficacy. The current study develops and pilot-tests a computer-assisted intervention that incorporates social network visualizations and MI techniques to reduce high risk AOD use and HIV behaviors among the formerly homeless. CLINICALTRIALS.Gov identifierNCT02140359

    Monte Carlo cluster algorithm for fluid phase transitions in highly size-asymmetrical binary mixtures

    Get PDF
    Highly size-asymmetrical fluid mixtures arise in a variety of physical contexts, notably in suspensions of colloidal particles to which much smaller particles have been added in the form of polymers or nanoparticles. Conventional schemes for simulating models of such systems are hamstrung by the difficulty of relaxing the large species in the presence of the small one. Here we describe how the rejection-free geometrical cluster algorithm (GCA) of Liu and Luijten [Phys. Rev. Lett 92, 035504 (2004)] can be embedded within a restricted Gibbs ensemble to facilitate efficient and accurate studies of fluid phase behavior of highly size-asymmetrical mixtures. After providing a detailed description of the algorithm, we summarize the bespoke analysis techniques of Ashton et al. [J. Chem. Phys. 132, 074111 (2010)] that permit accurate estimates of coexisting densities and critical-point parameters. We apply our methods to study the liquid--vapor phase diagram of a particular mixture of Lennard-Jones particles having a 10:1 size ratio. As the reservoir volume fraction of small particles is increased in the range 0--5%, the critical temperature decreases by approximately 50%, while the critical density drops by some 30%. These trends imply that in our system, adding small particles decreases the net attraction between large particles, a situation that contrasts with hard-sphere mixtures where an attractive depletion force occurs.Comment: 11 pages, 10 figure

    Critical Casimir interaction of ellipsoidal colloids with a planar wall

    Full text link
    Based on renormalization group concepts and explicit mean field calculations we study the universal contribution to the effective force and torque acting on an ellipsoidal colloidal particle which is dissolved in a critical fluid and is close to a homogeneous planar substrate. At the same closest distance between the substrate and the surface of the particle, the ellipsoidal particle prefers an orientation parallel to the substrate and the magnitude of the fluctuation induced force is larger than if the orientation of the particle is perpendicular to the substrate. The sign of the critical torque acting on the ellipsoidal particle depends on the type of boundary conditions for the order parameter at the particle and substrate surfaces, and on the pivot with respect to which the particle rotates

    Hierarchical Models for Independence Structures of Networks

    Get PDF
    We introduce a new family of network models, called hierarchical network models, that allow us to represent in an explicit manner the stochastic dependence among the dyads (random ties) of the network. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the dyads of the network, called the dependency graph. Every network model with dyadic independence assumption can be generalized to construct members of this new family. Using this new framework, we generalize the Erd\"os-R\'enyi and beta-models to create hierarchical Erd\"os-R\'enyi and beta-models. We describe various methods for parameter estimation as well as simulation studies for models with sparse dependency graphs.Comment: 19 pages, 7 figure

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    Development of sports turf systems suitable for Irish conditions.

    Get PDF
    End of Project ReportThe principal objective of the study was to establish scientific data in relation to the nutritional requirements and best management practice for golf greens constructed to the United States Golf Association (USGA) 1973 specification under Irish conditions. The game of golf is one of the biggest sports industries in the world. Income from golf tourism in Ireland has increased from £73 million in 1994 to £180 million in 1998. Good quality turfgrass is required to underpin the promotion of golf tourism. Traditionally, golf greens on Irish golf courses were constructed from local materials and vary from green to green within a given golf course and also between different golf courses. In recent years there is a perception that the quality of putting surfaces is superior on greens constructed to the USGA specification. In addition, greens constructed to this specification are similar one to the other and location to location. The principal features of the USGA 1973 specification could be summarised as follows: (1) A network of drainage pipes installed in the underground soil covered with a carpet of peat gravel; (2) A blinding layer of specifically graded sand placed on the peat gravel; (3) A root zone mixture of graded sand (80%) and graded peat moss (20%) by volume. The particle size of the component layers must comply to the exact specification in terms of size, diameter and shape. As sands contain no nutrients, the management of greens constructed mainly of sand is more exacting than the traditional soil constructed greens. The results from this project confirmed this assumption. Three major objectives were researched in this project: (a) the effect of micro nutrients, when applied or omitted, on the quality and growth of grass on a green surface; (b) the encroachment of Poa annua (annual meadow grass) onto the green; and (c) the comparison of two nitrogen top dressing programmes on sand greens. The detailed results are given in the text and in the conclusions of this report.European Union Structural Funds (EAGGF

    Electrophoretic Properties of Highly Charged Colloids: A Hybrid MD/LB Simulation Study

    Full text link
    Using computer simulations, the electrophoretic motion of a positively charged colloid (macroion) in an electrolyte solution is studied in the framework of the primitive model. Hydrodynamic interactions are fully taken into account by applying a hybrid simulation scheme, where the charged ions (i.e. macroion and electrolyte), propagated via molecular dynamics (MD), are coupled to a Lattice Boltzmann (LB) fluid. In a recent experiment it was shown that, for multivalent salt ions, the mobility μ\mu initially increases with charge density σ\sigma, reaches a maximum and then decreases with further increase of σ\sigma. The aim of the present work is to elucidate the behaviour of μ\mu at high values of σ\sigma. Even for the case of monovalent microions, we find a decrease of μ\mu with σ\sigma. A dynamic Stern layer is defined that includes all the counterions that move with the macroion while subject to an external electrical field. The number of counterions in the Stern layer, q0q_0, is a crucial parameter for the behavior of μ\mu at high values of σ\sigma. In this case, the mobility μ\mu depends primarily on the ratio q0/Qq_0/Q (with QQ the valency of the macroion). The previous contention that the increase in the distortion of the electric double layer (EDL) with increasing σ\sigma leads to the lowering of μ\mu does not hold for high σ\sigma. In fact, we show that the deformation of the EDL decreases with increase of σ\sigma. The role of hydrodynamic interactions is inferred from direct comparisons to Langevin simulations where the coupling to the LB fluid is switched off. Moreover, systems with divalent counterions are considered. In this case, at high values of σ\sigma the phenomenon of charge inversion is found.Comment: accepted in J. Chem Phys., 10 pages, 9 figure

    Large Attractive Depletion Interactions in Soft Repulsive-Sphere Binary Mixtures

    Full text link
    We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the approach toward the hard-sphere limit, and to the effect of density and temperature on the strength of the depletion potential. Our results indicate, surprisingly, that even a modest degree of softness in the pair potential governing the direct interactions between the particles may lead to a significantly more attractive total effective potential for the big spheres than in the hard-sphere case. This might lead to significant differences in phase behavior, structure and dynamics of a binary mixture of soft repulsive spheres. In particular, a perturbative scheme is applied to predict the phase diagram of an effective system of big spheres interacting via depletion forces for a size ratio of small and big spheres of 0.2; this diagram includes the usual fluid-solid transition but, in the soft-sphere case, the metastable fluid-fluid transition, which is probably absent in hard-sphere mixtures, is close to being stable with respect to direct fluid-solid coexistence. From these results the interesting possibility arises that, for sufficiently soft repulsive particles, this phase transition could become stable. Possible implications for the phase behavior of real colloidal dispersions are discussed.Comment: 31 pages, 8 figures; version accepted for publication in the Journal of Chemical Physic
    • …
    corecore