Highly size-asymmetrical fluid mixtures arise in a variety of physical
contexts, notably in suspensions of colloidal particles to which much smaller
particles have been added in the form of polymers or nanoparticles.
Conventional schemes for simulating models of such systems are hamstrung by the
difficulty of relaxing the large species in the presence of the small one. Here
we describe how the rejection-free geometrical cluster algorithm (GCA) of Liu
and Luijten [Phys. Rev. Lett 92, 035504 (2004)] can be embedded within a
restricted Gibbs ensemble to facilitate efficient and accurate studies of fluid
phase behavior of highly size-asymmetrical mixtures. After providing a detailed
description of the algorithm, we summarize the bespoke analysis techniques of
Ashton et al. [J. Chem. Phys. 132, 074111 (2010)] that permit accurate
estimates of coexisting densities and critical-point parameters. We apply our
methods to study the liquid--vapor phase diagram of a particular mixture of
Lennard-Jones particles having a 10:1 size ratio. As the reservoir volume
fraction of small particles is increased in the range 0--5%, the critical
temperature decreases by approximately 50%, while the critical density drops by
some 30%. These trends imply that in our system, adding small particles
decreases the net attraction between large particles, a situation that
contrasts with hard-sphere mixtures where an attractive depletion force occurs.Comment: 11 pages, 10 figure