152 research outputs found

    Structure of the Ambrosia Beetle (Coleoptera: Curculionidae) Mycangia Revealed Through Micro-Computed Tomography

    Get PDF
    Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) rely on a symbiosis with fungi for their nutrition. Symbiotic fungi are preserved and transported in specialized storage structures called mycangia. Although pivotal in the symbiosis, mycangia have been notoriously difficult to study, given their minute size and membranous structure. We compared the application of novel visualization methods for the study of mycangia, namely micro-computed tomography (micro-CT) and laser ablation tomography (LATscan) with traditional paraffin sectioning. Micro-CT scanning has shown the greatest promise in new organ discovery, while sectioning remains the only method with sufficient resolution for cellular visualization. All three common types of mycangia (oral, mesonotal, and pronotal) were successfully visualized and presented for different species of ambrosia beetles: Ambrosiodmus minor (Stebbing) 1909, Euplatypus compositus (Say) 1823, Premnobius cavipennis Eichhoff 1878, Scolytoplatypus raja Blandford 1893, Xylosandrus crassiusculus (Motschulsky) 1866 and X. amputatus (Blandford) 1894. A reconstruction of the mycangium and the surrounding musculature in X. amputatus is also presented. The advantages of micro-CT compared to the previously commonly used microtome sectioning include the easy visualization and recording of three-dimensional structures, their position in reference to other internal structures, the ability to distinguish natural aberrations from technical artifacts, and the unprecedented visualizations of the anatomic context of mycangia enabled by the integrated software

    Diversity and evolution of entomocorticium (Russulales, peniophoraceae), a genus of bark beetle mutualists derived from free-living, wood rotting peniophora

    Get PDF
    Symbiosis between insects and fungi arose multiple times during the evolution of both groups, and some of the most biologically diverse and economically important are mutualisms in which the insects cultivate and feed on fungi. Among these are bark beetles, whose ascomycetous cultivars are better known and studied than their frequently-overlooked and poorly understood basidiomycetous partners. In this study, we propose five new species of Entomocorticium, fungal mutualists in the Russulales (Basidiomycota) that are mutualistic symbionts of scolytine beetles. We have isolated these fungi from the beetle mycangia, which are structures adapted for the selective storage and transportation of fungal mutualists. Herein, we present the most complete phylogeny of the closely related genera Entomocorticium and Peniophora and provide insights into how an insect-associated taxon (Entomocorticium) evolved from within a wood-decaying, wind-dispersed lineage (Peniophora). Our results indicate that following a transition from angiosperms to gymnosperms, fungal domestication by beetles facilitated the evolution and diversification of Entomocorticium. We additionally propose four new species: Entomocorticium fibulatum Araújo, Li & Hulcr, sp. nov.; E. belizense Araújo, Li & Hulcr, sp. nov.; E. perryae Araújo, Li & Hulcr, sp. nov.; and E. macrovesiculatum Araújo, Li, Six & Hulcr, sp. nov. Our findings highlight the fact that insect-fungi associations remain an understudied field and that these associations harbor a large reservoir of novel fungal species.Fil: Araújo, João P. M.. University of Florida; Estados Unidos. New York Botanical Garden; Estados UnidosFil: Li, You. University of Florida; Estados UnidosFil: Six, Diana. University of Montana; Estados UnidosFil: Rajchenberg, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaFil: Smith, Matthew E.. University of Florida; Estados UnidosFil: Johnson, Andrew J.. University of Florida; Estados UnidosFil: Klepzig, Kier D.. University of Georgia; Estados UnidosFil: Crous, Pedro W.. Westerdijk Fungal Biodiversity Institute; Países BajosFil: Leal Dutra, Caio A.. Universidad de Copenhagen; DinamarcaFil: Skelton, James. The College of William and Mary; Estados UnidosFil: Adams, Sawyer N.. University of Florida; Estados UnidosFil: Hulcr, Jiri. University of Florida; Estados Unido

    Diversity and evolution of entomocorticium (Russulales, peniophoraceae), a genus of bark beetle mutualists derived from free-living, wood rotting peniophora

    Get PDF
    Symbiosis between insects and fungi arose multiple times during the evolution of both groups, and some of the most biologically diverse and economically important are mutualisms in which the insects cultivate and feed on fungi. Among these are bark beetles, whose ascomycetous cultivars are better known and studied than their frequently-overlooked and poorly understood basidiomycetous partners. In this study, we propose five new species of Entomocorticium, fungal mutualists in the Russulales (Basidiomycota) that are mutualistic symbionts of scolytine beetles. We have isolated these fungi from the beetle mycangia, which are structures adapted for the selective storage and transportation of fungal mutualists. Herein, we present the most complete phylogeny of the closely related genera Entomocorticium and Peniophora and provide insights into how an insect-associated taxon (Entomocorticium) evolved from within a wood-decaying, wind-dispersed lineage (Peniophora). Our results indicate that following a transition from angiosperms to gymnosperms, fungal domestication by beetles facilitated the evolution and diversification of Entomocorticium. We additionally propose four new species: Entomocorticium fibulatum Araújo, Li & Hulcr, sp. nov.; E. belizense Araújo, Li & Hulcr, sp. nov.; E. perryae Araújo, Li & Hulcr, sp. nov.; and E. macrovesiculatum Araújo, Li, Six & Hulcr, sp. nov. Our findings highlight the fact that insect-fungi associations remain an understudied field and that these associations harbor a large reservoir of novel fungal species.Fil: Araújo, João P. M.. University of Florida; Estados Unidos. New York Botanical Garden; Estados UnidosFil: Li, You. University of Florida; Estados UnidosFil: Six, Diana. University of Montana; Estados UnidosFil: Rajchenberg, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaFil: Smith, Matthew E.. University of Florida; Estados UnidosFil: Johnson, Andrew J.. University of Florida; Estados UnidosFil: Klepzig, Kier D.. University of Georgia; Estados UnidosFil: Crous, Pedro W.. Westerdijk Fungal Biodiversity Institute; Países BajosFil: Leal Dutra, Caio A.. Universidad de Copenhagen; DinamarcaFil: Skelton, James. The College of William and Mary; Estados UnidosFil: Adams, Sawyer N.. University of Florida; Estados UnidosFil: Hulcr, Jiri. University of Florida; Estados Unido

    A rapid biodiversity assessment of Papua New Guinea's Hindenburg Wall Region

    Get PDF
    [Extract] Aim: The Hindenburg Wall, along with the Muller Range and Nakanai Mountains, is a part of a proposed UNESCO World Heritage Site called The Sublime Karst of Papua New Guinea (Hamilton-Smith 2006). This survey document reports on a biodiversity assessment undertaken by the Wildlife Conservation Society Papua New Guinea (WCS), financed by the Papua New Guinea Sustainable Development Program Ltd (PNGSDP), and undertaken in partnership with the Papua New Guinea Department of Environment and Conservation (DEC). The aim of this project was to conduct a series of biological surveys in the region by a WCS-led team of international and nationaltaxonomic experts in order to investigate the biodiversity values in light of the area being a proposed UNESCO World Heritage Area

    Geosmithia associated with bark beetles and woodborers in the western USA : taxonomic diversity and vector specificity

    Get PDF
    Fungi in the genus Geosmithia (Ascomycota: Hypocreales) are frequent associates of bark beetles and woodborers that colonize hardwood and coniferous trees. One species, Geosmithia morbida, is an economically damaging invasive species. The authors surveyed the Geosmithia species of California and Colorado, USA, to (i) provide baseline data on taxonomy of Geosmithia and beetle vector specificity across the western USA; (ii) investigate the subcortical beetle fauna for alternative vectors of the invasive G. morbida; and (iii) interpret the community composition of this region within the emerging global biogeography of Geosmithia. Geosmithia was detected in 87% of 126 beetle samples obtained from 39 plant species. Twenty-nine species of Geosmithia were distinguished, of which 13 may be new species. Bark beetles from hardwoods, Cupressus, and Sequoia appear to be regular vectors, with Geosmithia present in all beetle gallery systems examined. Other subcortical insects appear to vector Geosmithia at lower frequencies. Overall, most Geosmithia have a distinct level of vector specificity (mostly high, sometimes low) enabling their separation to generalists and specialists. Plant pathogenic Geosmithia morbida was not found in association with any other beetle besides Pityophthorus juglandis. However, four additional Geosmithia species were found in P. juglandis galleries. When integrated with recent data from other continents, a global pattern of Geosmithia distribution across continents, latitudes, and vectors is emerging: of the 29 Geosmithia species found in the western USA, 12 have not been reported outside of the USA. The most frequently encountered species with the widest global distribution also had the broadest range of beetle vectors. Several Geosmithia spp. with very narrow vector ranges in Europe exhibited the similar degree of specialization in the USA. Such strong canalization in association could reflect an ancient origin of each individual association, or a recent origin and a subsequent diversification in North America.Czech Grant Agency (grant no. 16-15293Y), Long-Term Research Development Project (grant number RVO 67985939), Ministry of Education, Youth and Sports of the Czech Republic (grant number LO1509), USDA NIFA Western Region IPM Center and Critical Issues—Emerging and New Plant and Animal Pests and Diseases grant programs, USDA Forest Service Forest Health Monitoring Program (Detection Monitoring Grant No. INT-DM-09-01 and Evaluation Monitoring Grant No. INT-EM-B-11-03), USDA Forest Service Special Technology Development Grant R4-2011-01 (administered by A. S. Munson).http://www.tandfonline.com/toc/umyc202018-04-24hj2017Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog

    New Raffaelea species (Ophiostomatales) from the USA and Taiwan associated with ambrosia beetles and plant hosts

    Get PDF
    Raffaelea (Ophiostomatales) is a genus of more than 20 ophiostomatoid fungi commonly occurring in symbioses with wood-boring ambrosia beetles. We examined ambrosia beetles and plant hosts in the USA and Taiwan for the presence of these mycosymbionts and found 22 isolates representing known and undescribed lineages in Raffaelea. From 28S rDNA and β-tubulin sequences, we generated a molecular phylogeny of Ophiostomatales and observed morphological features of seven cultures representing undescribed lineages in Raffaelea s. lat. From these analyses, we describe five new species in Raffaelea s. lat.: R. aguacate, R. campbellii, R. crossotarsa, R. cyclorhipidia, and R. xyleborina spp. nov. Our analyses also identified two plantpathogenic species of Raffaelea associated with previously undocumented beetle hosts: (1) R. quercivora, the causative agent of Japanese oak wilt, from Cyclorhipidion ohnoi and Crossotarsus emancipatus in Taiwan, and (2) R. lauricola, the pathogen responsible for laurel wilt, from Ambrosiodmus lecontei in Florida. The results of this study show that Raffaelea and associated ophiostomatoid fungi have been poorly sampled and that future investigations on ambrosia beetle mycosymbionts should reveal a substantially increased diversity.The United States Department of Agriculture (USDA) Forest Service (FS)-SRS Coop agreement 14-CA-11330130-032, USDA-FS-FHP Coop agreement 12-CA-11420004-042, USDA Farm Bill agreement 12-8130-0377- CA, National Science Foundation grant DEB 1256968 and the Department of Science and Technology/ National Research Foundation Centre of Excellence in Tree Health Biotechnology (CTHB), South Africa.http://www.imafungus.orgam2017Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog

    Joining Inventory by Parataxonomists with DNA Barcoding of a Large Complex Tropical Conserved Wildland in Northwestern Costa Rica

    Get PDF
    BACKGROUND: The many components of conservation through biodiversity development of a large complex tropical wildland, Area de Conservacion Guanacaste (ACG), thrive on knowing what is its biodiversity and natural history. For 32 years a growing team of Costa Rican parataxonomists has conducted biodiversity inventory of ACG caterpillars, their food plants, and their parasitoids. In 2003, DNA barcoding was added to the inventory process. METHODOLOGY/PRINCIPAL FINDINGS: We describe some of the salient consequences for the parataxonomists of barcoding becoming part of a field biodiversity inventory process that has centuries of tradition. From the barcoding results, the parataxonomists, as well as other downstream users, gain a more fine-scale and greater understanding of the specimens they find, rear, photograph, database and deliver. The parataxonomists also need to adjust to collecting more specimens of what appear to be the "same species"--cryptic species that cannot be distinguished by eye or even food plant alone--while having to work with the name changes and taxonomic uncertainty that comes with discovering that what looked like one species may be many. CONCLUSIONS/SIGNIFICANCE: These career parataxonomists, despite their lack of formal higher education, have proven very capable of absorbing and working around the additional complexity and requirements for accuracy and detail that are generated by adding barcoding to the field base of the ACG inventory. In the process, they have also gained a greater understanding of the fine details of phylogeny, relatedness, evolution, and species-packing in their own tropical complex ecosytems. There is no reason to view DNA barcoding as incompatible in any way with tropical biodiversity inventory as conducted by parataxonomists. Their year-round on-site inventory effort lends itself well to the sampling patterns and sample sizes needed to build a thorough barcode library. Furthermore, the biological understanding that comes with barcoding increases the scientific penetrance of biodiversity information, DNA understanding, evolution, and ecology into the communities in which the parataxonomists and their families are resident

    Trees Wanted—Dead or Alive! Host Selection and Population Dynamics in Tree-Killing Bark Beetles

    Get PDF
    Bark beetles (Coleoptera: Curculionidae, Scolytinae) feed and breed in dead or severely weakened host trees. When their population densities are high, some species aggregate on healthy host trees so that their defences may be exhausted and the inner bark successfully colonized, killing the tree in the process. Here we investigate under what conditions participating with unrelated conspecifics in risky mass attacks on living trees is an adaptive strategy, and what this can tell us about bark beetle outbreak dynamics. We find that the outcome of individual host selection may deviate from the ideal free distribution in a way that facilitates the emergence of tree-killing (aggressive) behavior, and that any heritability on traits governing aggressiveness seems likely to exist in a state of flux or cycles consistent with variability observed in natural populations. This may have implications for how economically and ecologically important species respond to environmental changes in climate and landscape (forest) structure. The population dynamics emerging from individual behavior are complex, capable of switching between “endemic” and “epidemic” regimes spontaneously or following changes in host availability or resistance. Model predictions are compared to empirical observations, and we identify some factors determining the occurrence and self-limitation of epidemics

    Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland

    Get PDF
    Symbiosis with microbes is crucial for survival and development of wood-inhabiting longhorn beetles (Coleoptera: Cerambycidae). Thus, knowledge of the endemic fungal associates of insects would facilitate risk assessment in cases where a new invasive pest occupies the same ecological niche. However, the diversity of fungi associated with insects remains poorly understood. The aim of this study was to investigate fungi associated with the native large poplar longhorn beetle (Saperda carcharias) and the recently introduced Asian longhorn beetle (Anoplophora glabripennis) infesting hardwood trees in Finland. We studied the cultivable fungal associates obtained from Populus tremula colonised by S. carcharias, and Betula pendula and Salix caprea infested by A. glabripennis, and compared these to the samples collected from intact wood material. This study detected a number of plant pathogenic and saprotrophic fungi, and species with known potential for enzymatic degradation of wood components. Phylogenetic analyses of the most commonly encountered fungi isolated from the longhorn beetles revealed an association with fungi residing in the Cadophora-Mollisia species complex. A commonly encountered fungus was Cadophora spadicis, a recently described fungus associated with wood-decay. In addition, a novel species of Cadophora, for which the name Cadophora margaritata sp. nov. is provided, was isolated from the colonised wood.Peer reviewe
    corecore