3,506 research outputs found

    Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available bayesian automated classification

    Full text link
    We present an automated morphological classification in 4 types (E,S0,Sab,Scd) of ~700.000 galaxies from the SDSS DR7 spectroscopic sample based on support vector machines. The main new property of the classification is that we associate to each galaxy a probability of being in the four morphological classes instead of assigning a single class. The classification is therefore better adapted to nature where we expect a continuos transition between different morphological types. The algorithm is trained with a visual classification and then compared to several independent visual classifications including the Galaxy Zoo first release catalog. We find a very good correlation between the automated classification and classical visual ones. The compiled catalog is intended for use in different applications and can be downloaded at http://gepicom04.obspm.fr/sdss_morphology/Morphology_2010.html and soon from the CasJobs database.Comment: A&A in press, english corrections from language editor adde

    Comparing PyMorph and SDSS photometry. II. The differences are more than semantics and are not dominated by intracluster light

    Full text link
    The Sloan Digital Sky Survey pipeline photometry underestimates the brightnesses of the most luminous galaxies. This is mainly because (i) the SDSS overestimates the sky background and (ii) single or two-component Sersic-based models better fit the surface brightness profile of galaxies, especially at high luminosities, than does the de Vaucouleurs model used by the SDSS pipeline. We use the PyMorph photometric reductions to isolate effect (ii) and show that it is the same in the full sample as in small group environments, and for satellites in the most massive clusters as well. None of these are expected to be significantly affected by intracluster light (ICL). We only see an additional effect for centrals in the most massive halos, but we argue that even this is not dominated by ICL. Hence, for the vast majority of galaxies, the differences between PyMorph and SDSS pipeline photometry cannot be ascribed to the semantics of whether or not one includes the ICL when describing the stellar mass of massive galaxies. Rather, they likely reflect differences in star formation or assembly histories. Failure to account for the SDSS underestimate has significantly biased most previous estimates of the SDSS luminosity and stellar mass functions, and therefore Halo Model estimates of the z ~ 0.1 relation between the mass of a halo and that of the galaxy at its center. We also show that when one studies correlations, at fixed group mass, with a quantity which was not used to define the groups, then selection effects appear. We show why such effects arise, and should not be mistaken for physical effects.Comment: 15 pages, 17 figures, accepted for publication in MNRAS. The PyMorph luminosities and stellar masses are available at https://www.physics.upenn.edu/~ameert/SDSS_PhotDec

    Proximity effect-assisted absorption of spin currents in superconductors

    Full text link
    The injection of pure spin current into superconductors by the dynamics of a ferromagnetic contact is studied theoretically. Taking into account suppression of the order parameter at the interfaces (inverse proximity effect) and the energy-dependence of spin-flip scattering, we determine the temperature-dependent ferromagnetic resonance linewidth broadening. Our results agree with recent experiments in Nb|permalloy bilayers [C. Bell et al., arXiv:cond-mat/0702461].Comment: 4 page

    The high mass end of the stellar mass function: Dependence on stellar population models and agreement between fits to the light profile

    Full text link
    We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ~ 0.1. When comparing results from the literature, we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order < 0.5 dex, systematics in photometry are now about 0.1 dex, despite recent claims in the literature. Compared to these more recent analyses, previous work based on Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of rho_*(> M_*) by factors of 3-10 in the mass range 10^11 - 10^11.6 M_Sun, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order < 0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric models whenever low and high redshift samples are compared.Comment: 18 pages, 17 figures, accepted for publication in MNRAS. The PyMorph luminosities and stellar masses are available at https://www.physics.upenn.edu/~ameert/SDSS_PhotDec

    On the effect of COVID-19 pandemic in the excess of human mortality. The case of Brazil and Spain

    Full text link
    Excess of deaths is a technique used in epidemiology to assess the deaths caused by an unexpected event. For the present COVID-19 pandemic, we discuss the performance of some linear and nonlinear time series forecasting techniques widely used for modeling the actual pandemic and provide estimates for this metric from January 2020 to April 2021. We apply the results obtained to evaluate the evolution of the present pandemic in Brazil and Spain, which allows in particular to compare how well (or bad) these countries have managed the pandemic. For Brazil, our calculations refute the claim made by some officials that the present pandemic is "a little flu". Some studies suggest that the virus could be lying dormant across the world before been detected for the first time. In that regard, our results show that there is no evidence of deaths by the virus in 2019This work was supported in the form of funding in part by Ministerio de Ciencia e Innovacio´n of Spain (Grant No. PID2019-108079GB-C22/AEI/10.13039/501100011033)awarded to N

    A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. II. Quantifying morphological k-correction in the COSMOS field at 1<z<2: Ks band vs. I band

    Get PDF
    We quantify the effects of \emph{morphological k-correction} at 1<z<21<z<2 by comparing morphologies measured in the K and I-bands in the COSMOS area. Ks-band data have indeed the advantage of probing old stellar populations for z<2z<2, enabling a determination of galaxy morphological types unaffected by recent star formation. In paper I we presented a new non-parametric method to quantify morphologies of galaxies on seeing limited images based on support vector machines. Here we use this method to classify \sim5000050 000 KsKs selected galaxies in the COSMOS area observed with WIRCam at CFHT. The obtained classification is used to investigate the redshift distributions and number counts per morphological type up to z2z\sim2 and to compare to the results obtained with HST/ACS in the I-band on the same objects from other works. We associate to every galaxy with Ks<21.5Ks<21.5 and z<2z<2 a probability between 0 and 1 of being late-type or early-type. The classification is found to be reliable up to z2z\sim2. The mean probability is p0.8p\sim0.8. It decreases with redshift and with size, especially for the early-type population but remains above p0.7p\sim0.7. The classification is globally in good agreement with the one obtained using HST/ACS for z<1z<1. Above z1z\sim1, the I-band classification tends to find less early-type galaxies than the Ks-band one by a factor \sim1.5 which might be a consequence of morphological k-correction effects. We argue therefore that studies based on I-band HST/ACS classifications at z>1z>1 could be underestimating the elliptical population. [abridged]Comment: accepted for publication in A&A, updated with referee comments, 12 pages, 10 figure

    Dynamic exchange coupling and Gilbert damping in magnetic multilayers

    Full text link
    We theoretically study dynamic properties of thin ferromagnetic films in contact with normal metals. Moving magnetizations cause a flow of spins into adjacent conductors, which relax by spin flip, scatter back into the ferromagnet, or are absorbed by another ferromagnet. Relaxation of spins outside the moving magnetization enhances the overall damping of the magnetization dynamics in accordance with the Gilbert phenomenology. Transfer of spins between different ferromagnets by these nonequilibrium spin currents leads to a long-ranged dynamic exchange interaction and novel collective excitation modes. Our predictions agree well with recent ferromagnetic-resonance experiments on ultrathin magnetic films.Comment: 15 pages, 3 figures, for MMM'02 proceeding

    Las bentonitas de la zona sur de Cabo de Gata (Almería). Geoquímica y Mineralogía

    Get PDF
    Se han estudiado las caracteristicas quimicas y mineralógicas de las bentonitas y esmectitas de esta region, asi como sus principales parametros cristalográficos y fórmulas estructurales de las esmectita

    Hunting long-lived gluinos at the Pierre Auger Observatory

    Get PDF
    A ps version of the paper with high resolution figures is available at: http://www.hep.physics.neu.edu/staff/doqui/rhadron_highres.psEventual signals of split sypersymmetry in cosmic ray physics are analyzed in detail. The study focusses particularly on quasi-stable colorless R-hadrons originating through confinement of long-lived gluinos (with quarks, anti-quarks, and gluons) produced in pp collisions at astrophysical sources. Because of parton density requirements, the gluino has a momentum which is considerable smaller than the energy of the primary proton, and so production of heavy (mass ~ 500 GeV) R-hadrons requires powerful cosmic ray engines able to accelerate particles up to extreme energies, somewhat above 10^{13.6} GeV. Using a realistic Monte Carlo simulation with the AIRES engine, we study the main characteristics of the air showers triggered when one of these exotic hadrons impinges on a stationary nucleon of the Earth atmosphere. We show that R-hadron air showers present clear differences with respect to those initiated by standard particles. We use this shower characteristics to construct observables which may be used to distinguish long-lived gluinos at the Pierre Auger Observatory.Peer reviewe
    corecore