2,932 research outputs found

    Experimental rearing of Nile tilapia fry (Oreochromis niloticus) for saltwater culture

    Get PDF
    Represents a preliminary evaluation of the utility of various approaches of early salinity exposure for saltwater culture of tilapias. Studies the reproductive performance of Nile tilapia under laboratory conditions at various salinities; salinity tolerance of progeny; survivorship of fertilized eggs, spawned in freshwater but removed from the mouth of the parent female and artificially incubated at various salinities.Rearing, Experimental culture, Tilapia culture, Salinity tolerance, Salinity effects Oreochromis niloticus

    Salinity tolerance of the tilapias Oreochromis aureus, O. niloticus and an O. mossambicus X O. niloticus hybrid

    Get PDF
    Studies ontogenetic changes in salinity tolerance in tilapias spawned and reared in freshwater using the indices of median lethal salinity, mean survival time and median survival time. Discusses implications of findings for brackish - and seawater culture of tilapias.Salinity tolerance, Hybrids, Tilapia Oreochromis aureus, Oreochromis niloticus, Oreochromis mossambicus

    Electronic damping of molecular motion at metal surfaces

    Full text link
    A method for the calculation of the damping rate due to electron-hole pair excitation for atomic and molecular motion at metal surfaces is presented. The theoretical basis is provided by Time Dependent Density Functional Theory (TDDFT) in the quasi-static limit and calculations are performed within a standard plane-wave, pseudopotential framework. The artificial periodicity introduced by using a super-cell geometry is removed to derive results for the motion of an isolated atom or molecule, rather than for the coherent motion of an ordered over-layer. The algorithm is implemented in parallel, distributed across both k{\bf k} and g{\bf g} space, and in a form compatible with the CASTEP code. Test results for the damping of the motion of hydrogen atoms above the Cu(111) surface are presented.Comment: 10 pages, 3 figure

    Energy-aware fetch mechanism: trace cache and BTB customization

    Get PDF

    Nonlinear Modulation of Multi-Dimensional Lattice Waves

    Full text link
    The equations governing weakly nonlinear modulations of NN-dimensional lattices are considered using a quasi-discrete multiple-scale approach. It is found that the evolution of a short wave packet for a lattice system with cubic and quartic interatomic potentials is governed by generalized Davey-Stewartson (GDS) equations, which include mean motion induced by the oscillatory wave packet through cubic interatomic interaction. The GDS equations derived here are more general than those known in the theory of water waves because of the anisotropy inherent in lattices. Generalized Kadomtsev-Petviashvili equations describing the evolution of long wavelength acoustic modes in two and three dimensional lattices are also presented. Then the modulational instability of a NN-dimensional Stokes lattice wave is discussed based on the NN-dimensional GDS equations obtained. Finally, the one- and two-soliton solutions of two-dimensional GDS equations are provided by means of Hirota's bilinear transformation method.Comment: Submitted to PR

    Evolution of Non-Equilibrium Profile in Adsorbate Layer under Compressive Strain

    Full text link
    We investigate the time evolution of an initial step profile separating a bare substrate region from the rest of the compressively strained adsorbate layer near a commensurate to incommensurate transition. The rate of profile evolution as a function of the mismatch, coverage and the strength of the substrate potential are determined by Brownian molecular dynamics simulations. We find that the results are qualitatively similar to those observed for the Pb/Si(111) system. The anomalously fast time evolution and sharpness of the non-equilibrium profile can be understood through the domain wall creation at the boundary and its subsequent diffusion into the interior of the adsorbate layer.Comment: 6 pages, 7 figures, Tribology Letter

    LES of non-Newtonian physiological blood flow in a model of arterial stenosis

    Get PDF
    Large Eddy Simulation (LES) is performed to study the physiological pulsatile transition-to-turbulent non-Newtonian blood flow through a 3D model of arterial stenosis by using five different blood viscosity models: (i) Power-law, (ii) Carreau, (iii) Quemada, (iv) Cross and (v) modified-Casson. The computational domain has been chosen is a simple channel with a biological type stenosis formed eccentrically on the top wall. The physiological pulsation is generated at the inlet of the model using the first four harmonic series of the physiological pressure pulse (Loudon and Tordesillas [1]). The effects of the various viscosity models are investigated in terms of the global maximum shear rate, post-stenotic re-circulation zone, mean shear stress, mean pressure, and turbulent kinetic energy. We find that the non-Newtonian viscosity models enlarge the length of the post-stenotic re-circulation region by moving the reattachment point of the shear layer separating from the upper wall further downstream. But the turbulent kinetic energy at the immediate post-lip of the stenosis drops due to the effects of the non-Newtonian viscosity. The importance of using LES in modelling the non-Newtonian physiological pulsatile blood flow is also assessed for the different viscosity models in terms of the results of the dynamic subgrid-scale (SGS) stress Smagorinsky model constant, C<sub>s</sub>, and the corresponding SGS normalised viscosity

    A simple model for magnetism in itinerant electron systems

    Full text link
    A new lattice model of interacting electrons is presented. It can be viewed as a classical Hubbard model in which the energy associated to electron itinerance is proportional to the total number of possible electron jumps. Symmetry properties of the Hubbard model are preserved. In the half-filled band with strong interaction the model becomes the Ising model. The main features of the magnetic behavior of the model in the one-dimensional and mean-field cases are studied.Comment: 9 pages, 3 figures, to be published in Physica

    Distribution and density of the partition function zeros for the diamond-decorated Ising model

    Full text link
    Exact renormalization map of temperature between two successive decorated lattices is given, and the distribution of the partition function zeros in the complex temperature plane is obtained for any decoration-level. The rule governing the variation of the distribution pattern as the decoration-level changes is given. The densities of the zeros for the first two decoration-levels are calculated explicitly, and the qualitative features about the densities of higher decoration-levels are given by conjecture. The Julia set associated with the renormalization map is contained in the distribution of the zeros in the limit of infinite decoration level, and the formation of the Julia set in the course of increasing the decoration-level is given in terms of the variations of the zero density.Comment: 8 pages,8figure

    Continuous Monitoring of Dynamical Systems and Master Equations

    Full text link
    We illustrate the equivalence between the non-unitary evolution of an open quantum system governed by a Markovian master equation and a process of continuous measurements involving this system. We investigate a system of two coupled modes, only one of them interacting with external degrees of freedom, represented, in the first case, by a finite number of harmonic oscillators, and, in the second, by a sequence of atoms where each one interacts with a single mode during a limited time. Two distinct regimes appear, one of them corresponding to a Zeno-like behavior in the limit of large dissipation
    corecore