
Energy-Aware Fetch Mechanism:
Trace Cache and BTB Customization

Daniel Chaver, Miguel A. Rojas, Luis Pinuel,

Manuel Prieto, Francisco Tirado
Dpto. Arquitectura de Computadores

Universidad Complutense, Madrid, Spain
{dani02, miguel.rojas, lpinuel, mpmatias, ptirado}@dacya.ucm.es

Michael C. Huang
Dept. of Electrical and Computer Engineering

University of Rochester
Rochester, NY, USA

{michael.huang}@ece.rochester.edu

ABSTRACT1
A highly-efficient fetch unit is essential not only to obtain good
performance but also to achieve energy efficiency. However,
existing designs are inflexible and depending on program
behavior, can be either insufficient or an overkill. We introduce a
phase-based adaptive fetch mechanism that can be dynamically
adjusted based on feedback information of the program behavior.
This design adds very little hardware complexity and relegates
complex tasks to the software components. It is also very
effective: saving 26.8% and 34.1% fetch energy on average
compared with a conventional and a trace cache-based fetch unit,
respectively. At the same time, performance is improved by 5.7%
and 0.6%, respectively.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles-
Adaptable Architectures.

General Terms
Design, Experimentation, Performance.

Keywords
Adaptive, Instruction Fetch, Profiling.

1. INTRODUCTION
Modern high-end processors rely on sophisticated branch
prediction and instruction fetch mechanisms to achieve high
performance and energy efficiency. Without a constant, smooth
supply of instructions, the rest of the pipeline will not only
perform poorly, but also use energy inefficiently. However, such
sophisticated mechanisms are not without cost and can account

* This work is supported in part by the Spanish Government grant TIC

2002-750, the HiPEAC European Network of Excellence, and the
National Science Foundation through the grant CNS-0509270. Manuel
Prieto was also supported by the Spanish Government MECD mobility
program PR2003-0306.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-137-6/05/0008...$5.00.

for a significant fraction of energy consumption (e.g., 22% in
Pentium Pro).
A conventional fetch mechanism consists of an instruction cache
and a branch predictor (including a direction predictor and a
branch target buffer). The most basic instruction fetch mechanism
can only supply a consecutive chunk of instructions from a single
cache line. If a branch is predicted to be taken, the fetching of
target instructions is delayed to the next cycle. This is referred to
as SEQ1 [1]. A slightly more aggressive variation of this
conventional fetch mechanism is to add the capability to fetch
across multiple branches. In such an implementation, a multi-
branch predictor is needed to provide n predictions per cycle. For
example, a SEQ3 scheme [1] can fetch across up to 3 branches,
provided all the targets remain in the same cache line. We note
that the additional complexity of SEQ3 over SEQ1 is rather low:
besides requiring a multi-branch predictor, the hardware only
needs to “collapse” the fetched cache line to remove instructions
between the taken branches and their respective targets.
Rotenberg et al. introduced the trace cache as a promising
solution to obtain a high bandwidth instruction fetching with a
very low latency [1]. The idea is to capture dynamic instruction
sequences in an additional cache that stores traces. A trace is a
sequence of at most n instructions and at most m basic blocks,
identified by its starting address and m-1 branch outcomes. Note
that a multi-branch predictor is needed to provide m-1 predictions
per cycle. In a conventional trace cache design (referred to as
CTC [2, 3]), the trace cache, the multi-branch predictor, and the I-
cache are accessed simultaneously to reduce miss penalty when
the trace cache misses. In a Sequential Trace Cache (STC) design
[2, 3], instruction fetch is carried out in two phases. The trace
cache and branch predictor are accessed first, and the I-cache is
accessed later, only upon a trace cache miss. At the cost of longer
latency when the trace cache misses, this approach can reduce the
energy consumption due to unnecessary access of the I-cache
when the trace cache hits.
Given all these different fetch options, the best strategy depends
on the behavior of the program. Intuitively, the best option is the
one that balances the front-end of the machine, which fetches the
instructions, and the execution engine, which processes them. If
the front-end can not keep up, the execution will take longer than
necessary and this longer execution increases energy consumption
due to clock distribution and other overhead. Conversely, an
overly aggressive front-end can not further improve performance,
and thus its high energy expenditure becomes unnecessary.
Unfortunately, program behavior varies not only across
applications but also within a single application. Hence, there is

42

no fixed configuration that always works efficiently. An efficient
system will be adaptive, selecting the fetch policy that works best
for the code currently executing. Additionally, the size of various
structures, such as the trace cache and the branch target buffer
(BTB), also adjusts according to program demand.,
In this work, our focus is to design such a flexible fetch
mechanism that can reduce energy consumption and improve
performance without significantly increasing the design
complexity. We adopt the general principle of on-demand
resource allocation and propose a design that we call Phase-Based
Adaptive Fetch Mechanism (PBAFM). In this scheme, the
instruction fetch unit is adjusted periodically, at the boundary of
phases to adapt to the changing program behavior. A phase is a
period of execution with predictable behavior. In this paper, we
use a simple strategy to identify program phases. We follow prior
work [6, 7] and statically divide an application into modules. The
dynamic execution of a static code module is a natural candidate
of a phase: prior execution of a code module can be used to
accurately predict behavior of future instances. Given the
command to adapt, the hardware re-orchestrates the fetch
mechanism using a different combination of the component
structures. Furthermore, using existing circuit techniques [4, 5],
the size of these structures is also adjusted according to the
software command.
To simplify the design and reduce runtime overhead, we use a
feedback-based approach relying on software components to
identify resource demand and make a decision on the choice of
configuration. The hardware, on the other hand, only provides the
primitives to carry out the reconfiguration. We show that our
proposal is straightforward to implement and is highly effective: it
not only saves fetch energy by 26.8% and 34.1% compared to a
conventional fetch unit (SEQ1) and a trace cache-based fetch unit
respectively, it also improves the performance of execution.
The rest of this paper is organized as follows. We first discuss the
rationale of our work in Section 2. In Section 3 we explain our
adaptive fetch design. Section 4 describes the experimental
framework. Evaluation results are shown in Section 5. Section 6
discusses related work. Finally, Section 7 presents some
conclusions.

2. RATIONALE
Intuitively, what fetch mechanism works well depends on the
application’s characteristics. When the application exhibits high
trace cache hit ratios, an STC will avoid the unnecessary waste
accessing the I-cache in parallel and is thus more efficient than
the CTC. On the other hand, when the application exhibits high
trace cache miss ratios, the CTC may be a better mechanism since
the STC incurs extra latency every time that the trace cache
misses.
Given the wide variety of general-purpose applications, it is not
surprising that there is no single optimal fetch mechanism or
configuration. Figure 1 illustrates this point quantitatively. We
simulate the execution of several SPEC CPU 2000 applications
(the details of the experimental methodology will be described
later in Section 4) and show the energy-delay product of the
execution under different fetch policies and configurations. Figure
1-(a) shows the energy-delay product of a system using SEQ3 and
CTC fetch policy with different trace cache sizes. We present
normalized results using the energy-delay product of a baseline

system with a SEQ1 policy. In Figure 1-(b) we vary the BTB size
from 256 entries to 4096 entries and normalize the result to that of
a processor with a smaller BTB (128 entries).

From these results, we can make several observations. First,
different fetch mechanisms work differently depending on the
application. For example, while SEQ3 works well for parser and
twolf, CTC is a better choice for gap and vortex. Moreover, the
optimal policy may depend on the specific configuration. For
example, with a trace cache smaller than 64KB, CTC is the most
efficient mechanism for application gcc, however, a bigger trace
cache makes it less efficient than SEQ3. Finally, configuration
details such as BTB size can also drastically affect the efficiency
of program execution.

0,7

0,8

0,9

1,0

1,1

1,2

gap bzip parser vortex twolf gzip gcc art

En
er

gy
*D

el
ay

SEQ3
CTC_2KB
CTC_8KB
CTC_32KB
CTC_64KB

0,7

0,8

0,9

1,0

1,1

1,2

gap bzip parser vortex twolf gzip gcc art

En
er

gy
*D

el
ay

BTB_256
BTB_512
BTB_1024
BTB_4096

Figure 1. Energy-delay product of program execution under
different fetch mechanisms and structure configurations.
Figure 1-(a) (top) shows the energy-delay product of SEQ3
and CTC with different trace cache sizes. The results are
normalized to SEQ1. Figure 1-(b) (bottom) shows the energy-
delay product using different BTB sizes. The results are
normalized to a BTB with 128 entries.

From these observations, it is obvious that fetch requirements
vary significantly from application to application. So, we propose
an adaptive fetch mechanism choosing among different fetch
schemes: SEQ1, SEQ3, CTC, and a modified STC (the
modification is explained in Section 3.4).
The first two configurations avoid trace cache access while the
others make use of it. In some cases when the branch
misprediction rate is high, using a trace cache is
counterproductive, since it executes many wrong path
instructions, which increases pollution in some structures like the
cache and increase energy consumption. In these cases it may
make sense to use a SEQ1 or a SEQ3 fetch policy. For the trace
cache based schemes, our adaptive mechanism has two

43

possibilities. In the first, CTC, the fetch unit accesses at the same
time to the trace cache, the I-cache, the multi-branch predictor,
and the BTB (in a similar way to CTC [2, 3]). This configuration
is useful when the trace cache behaves well, but the I-cache still
provides a considerable amount of instructions. The second
configuration is a modified STC. In those cases when trace cache
provides almost all instructions to the back-end, the fetch unit
virtually divides into two phases, like in [2] and [3]. It accesses
first the trace cache and the multi-branch predictor, and then the I-
cache and the BTB – only when a trace cache miss occurs.
The adaptive fetch mechanism can also adjust the size of some
structures. Figure 1 suggests that the optimal size for trace cache
or BTB varies. Consequently, our adaptive fetch mechanism
resizes these structures to the most appropriate configuration.

3. ADAPTIVE FETCH MECHANISM
We intend to adapt the fetch policy and trace cache and BTB sizes
at the boundary of program phases, where the behavior is about to
change. While the concept of program phases is simple at an
intuitive level – that the program goes through different periods of
execution with different behavior, accurate and efficient phase
detection and behavior prediction for future phases are
challenging and are currently being investigated by many research
groups. In this paper, we use a code-based approach [8] that is
straightforward and very effective in our design. We associate the
behavior of a period of execution with the static code section that
is being executed and use the behavior of past instances of that
section to predict the behavior of future instances. While this
learning and prediction process can be performed online, the need
for any extra hardware for prediction will not only complicate the
hardware but also consume energy, which will reduce the benefit
of adaptation. In this paper, we adopt an offline approach for its
simplicity and effectiveness.
We first need to establish the phase boundaries (Section 3.1).
Once each phase is identified, we use profile information to
decide what policy and structure sizes to use in each phase. This
information is then encoded into the binary, so that at runtime, it
instructs the hardware to adapt. Sections 3.2 and 3.3 describe
these steps.

3.1 Phase Detection
As mentioned above, we use a simple code-based approach. We
partition the code into modules purely based on granularity. We
want the modules to be big enough to reduce overhead associated
with runtime adaptation and yet small enough to have more
consistent behavior. The technique employed is the same to the
one detailed in [6, 7]. Arguably, the partitioning may be improved
when the behavior of the modules is taken into account. We leave
this as future work.
We tie fetch reconfiguration to the static code because,
intuitively, the code strongly affects fetch demand. After all,
every structure from the fetch mechanism uses an instruction
address, exclusively or inclusively, to index it. Also, the runtime
path of instructions does not change much. Finally, prior research
has shown that tying adaptively control to the code’s position is
generally more effective than time-based prediction and control
mechanisms [8].
The module’s granularity is important. If a module is too fine-
grain, the reconfiguration overhead at runtime will be large. If it is

too coarse-grain, it may contain smaller units with different fetch
demands. So it becomes important to find the optimal module-
division of the application. In this work, we use important
subroutines as modules. Besides, when the subroutine is too big, it
is further divided into its internal loops. This process of
partitioning follows [7]. The particular thresholds we use in our
study in selecting subroutines and loops are the average length per
invocation and total execution time weight. We set these
thresholds to 1 microsecond and 5 percent respectively. As an
example, gzip was divided in 7 modules. We found 5 important
subroutines, one of them big enough to be further divided, so it
was split in 3 internal loops. The resulting partition works well in
our study: the adaptation not only results in significant energy
savings, but also improves the performance.
The overhead resulted from runtime adaptation is negligible. In
our experiments, even assuming a very conservative 50-cycle
switching overhead, the percentage of cycles spent in
reconfiguration is less than 0.01% in all cases due to the relatively
coarse granularity of the modules.

3.2 Configuration Space Exploration
Our approach draws on profiling with reduced inputs to determine
each module’s demand. The energy and performance metrics are
collected by means of software instrumentation, simulation or by
using hardware performance counters. A naive implementation
would exhaustively search the space, covering all possible
combinations of the different module’s configurations. However
this is impractical because it would require nm profiling runs,
where n is the number of possible processor configurations and m
is the number of modules.

-5

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7
Modules

IP
C

 Im
pr

ov
em

en
t (

%
)

SEQ3
CTC4KB,BTB4K
CTC32KB,BTB4K
CTC4KB,BTB1K
CTC32KB,BTB1K
STC4KB,BTB4K
STC32KB,BTB4K

-3

2

7

12

1 2 3 4 5 6 7
Modules

En
er

gy
 S

av
in

gs
 (%

)

SEQ3
CTC4KB,BTB4K
CTC32KB,BTB4K
CTC4KB,BTB1K
CTC32KB,BTB1K
STC4KB,BTB4K
STC32KB,BTB4K

Figure 2. Results for the different modules of gzip. Figure 2-
(a) (on top) illustrates IPC improvement of different schemes
over a SEQ1. Figure 2-(b) (on bottom) shows energy savings
over a SEQ1. A negative value implies performance or energy
loss in the given scheme compared to SEQ1.

44

We decrease the number of experiments assuming that choosing a
different configuration for one module does not affect other
modules. Under this assumption, the number of experiments in
the profiling stage decreases to n*m, significantly fewer than the
naive solution. The assumption ignores the effect of destructive or
constructive interference among different modules. This
interference tends to be secondary unless the size of the trace
cache becomes very small. Given that we never go down to such
small sizes this effect is irrelevant in our study.
As an example, Figure 2 illustrates results for a given application
(gzip). Figure 2-(a) illustrates the IPC improvement achieved in
each module using a SEQ3 and different CTC and STC schemes
over a SEQ1 baseline. Figure 2-(b) shows the processor-wide
energy savings achieved for the same set of configurations,
compared again to the baseline SEQ1. We can see that the energy
savings can be quite dramatic in certain modules, reaching more
than 15% processor-wide energy savings just by adapting the
fetch mechanism.

3.3 Decision Making for Adaptation
After per-module exploration, we have to obtain the best
configuration for each module, depending on the energy and
performance target. This is the same as solving a knapsack
problem [9]: the tolerable performance degradation is the
knapsack's capacity while the total energy savings is the value we
want to maximize. As in [6], we employ a greedy strategy to find
an approximation solution.
The knapsack algorithm adopts a global approach in deciding the
configurations to choose for each module. We observe that a
simpler approach may also work. For some modules,
configurations are very easy to select just based on local
information of that module and would not require the more global
consideration. For example, from Figure 2, for module 3 it is
obvious that an STC is the best approach to use, since it obtains a
very similar IPC as the others, but achieves higher energy
savings. On the other hand, module 7 should adapt to a SEQ3
configuration, since any of the trace cache based configurations
behaves significantly poorer, due to a high number of wrong path
speculated instructions.

3.4 Hardware Support
As mentioned above, we intend to adapt the fetch unit to match
the requirement of each application phase. Our fetch unit can
adopt any of the 4 different configurations that we consider
(SEQ1, SEQ3, CTC, and a modified STC). We modify the STC
originally proposed by Hu et al. [2, 3]. In our design, the BTB is
not accessed when the trace cache hits. This can be done since our
trace cache directly provides the target address.
In addition to adapting to the best policy, trace cache and BTB
sizes can also be adapted. There are several existing schemes for
resizing caches and circuitry to perform the resizing. In particular,
the associativity [4], the number of sets [5], or the combination of
the two can be adjusted dynamically. The effectiveness of these
schemes depends on the particular cache structure organization. In
our case, dynamically varying the number of sets of the baseline
cache is more effective than changing cache ways.
Figure 3 illustrates the design that we are using. When the SEQ1
signal is set, trace cache access is disabled, and just the first
prediction bit from the multi-branch predictor is used. When the
SEQ3 signal is set, trace cache access is disabled, but the 3

prediction bits are used. When STC1 is set (first phase of a
modified STC configuration), access to I-Cache and BTB is
gated, while if STC2 is set (second phase of a modified STC
configuration), access to trace cache and multi-branch predictor is
gated.

Resizable
T-Cache I-Cache

Fetch_address

Resizable
BTBMulti-BP

Hit Logic

1 or 3 prediction bits

TC-line

TC-line

Hit in TC?

IC-lineTC-next-Addr

BTB Logic

Next AddressInstructions

SEQ1

STC2 STC1
SEQ3

PC++

Figure 3. Hardware support.

4. EXPERIMENTAL FRAMEWORK
We have evaluated our proposed adaptive fetch on a simulated
generic out-of-order processor, whose main parameters are
summarized in Table 1. As the evaluation tool, we employ a
modified version of SimpleScalar [10], incorporating the Wattch
framework [11] to evaluate energy consumption.
To evaluate our designs for different applications, we select
several benchmarks from the SPEC CPU2000 suite. In selecting
those applications, we tried to cover the wider variety of
behaviour. We simulated each application to completion, using
the train input as our default production input.

Table 1. Simulated parameters.

16-issue out-of-order processor
120 integer and floating-point physical registers
I-Queue and FP-Queue: 64 entries
Branch predictor: 2-level, 16K entries / BTB: 4K entries
RAS: 32 entries / LSQ: 128 entries
L1 data cache: 64KB, 4-way, LRU, latency: 1 cycle
L2 cache: 512KB, 4-way, LRU, latency: 6 cycle
L1 instruction cache: 64KB, 2-way, LRU, latency: 1 cycle
Trace cache: 32KB, 2-way, LRU, latency: 1 cycle, partial
matching
Memory access: 100 cycles

The trace cache we are simulating is accessed by the least
significant bits of the fetch address. Each trace contains: a tag
(most significant bits of the address), 3 prediction bits, the number
of branches and of instructions that the trace contains, a maximum
of 16 instructions, and the next instruction PC for a final taken
branch. For filling in the trace cache, there is a buffer that stores
every committed instruction, so that when a trace is completed, it
is stored into the trace cache (at a maximum rate of one trace per
cycle). The trace cache we employ allows partial matching [1].

45

We should highlight that this implementation guarantees one
cycle access to the trace cache, but only allows one trace per fetch
address.

Our baseline fetch unit uses a 32KB trace cache, a 64KB I-cache,
a 4K-entry BTB, and a 2-level multi-branch predictor with 16K
entries. Both BTB and trace cache can be downsized to smaller
structures (BTB: 4K, 2K, 1K, 512, 256, or 128 entries; trace
cache: 32KB, 16KB, 8KB, 4KB, or 2KB).

The multi-branch predictor that we are using is a two level gshare
predictor with a golden BHR [12] updated in the fetch stage.The
main BHR and PHT are updated in the decode stage.

5. EXPERIMENTAL RESULTS

5.1 Energy Savings
Table 2 summarizes the energy savings in the processor’s fetch
unit of PBAFM over 4 different non-adaptive designs (SEQ1,
SEQ3, CTC-4KB, and CTC-32KB), all of which employ a 4K-
entry BTB and a 64KB I-cache.

Table 2. Fetch unit energy savings achieved by PBAFM over 4
different non-adaptive designs (SEQ1, SEQ3, CTC-4K, and
CTC-32K).

Gap Bzip Parser Twolf Crafty
SEQ1 31% 49% 19% 22% 16%
SEQ3 26% 33% 19% 20% 15%

CTC-4KB 24% 36% 26% 26% 20%
CTC-32KB 26% 38% 35% 39% 31%

Vortex Gcc Gzip Vpr INT-Avg
SEQ1 32% 25% 23% 17% 26.0%
SEQ3 27% 21% 21% 15% 21.9%

CTC-4KB 26% 20% 21% 22% 24.6%
CTC-32KB 28% 20% 19% 34% 30.0%

Applu Art Mgrid Swim FP-Avg
SEQ1 33% 27% 22% 32% 28.5%
SEQ3 36% 29% 24% 34% 30.8%

CTC-4KB 40% 33% 30% 40% 35.8%
CTC-32KB 46% 41% 40% 46% 43.3%

As can be noticed, the energy savings achieved by PBAFM are
significant both in integer and floating-point applications. All the
adaptation mechanisms incorporated in PBAFM contribute to this
enhancement. Trace cache and BTB resizing are useful in most
cases, especially in floating-point applications. In those modules
where trace cache performs poorly, it is disabled, which results in
significant energy savings. On the other hand, in those modules
where the trace cache performs exceptionally well, the savings
come from the use of a modified STC, in which BTB and I-cache
are accessed only when the trace cache misses.
As Table 3 illustrates, improvements in the fetch unit translate
into notable energy savings in the whole processor. These savings
are not only due to the savings in the fetch unit. In those modules
where a less aggressive fetch policy is used (especially SEQ1) an
extra saving comes from the mis-speculation reduction (mis-
speculation pollutes the branch predictor and incurs extra energy
executing wrong instructions). In addition, for integer
applications, improving performance (as will be shown in Section
5.2) saves energy, mostly by cutting down extra clock distribution
energy.

Table 3. Processor energy savings achieved by PBAFM over 4
different non-adaptive designs (SEQ1, SEQ3, CTC-4K, and
CTC-32K).

Gap Bzip Parser Twolf Crafty
SEQ1 5.8% 10.0% 3.1% 3.4% 5.8%
SEQ3 4.5% 5.4% 1.7% 2.0% 2.1%

CTC-4KB 3.1% 5.1% 3.8% 4.1% 4.3%
CTC-32KB 2.5% 6.1% 4.4% 4.8% 4.7%

Vortex Gcc Gzip Vpr INT-Avg
SEQ1 10.8% 6.9% 7.4% 3.9% 6.4%
SEQ3 4.6% 4.0% 4.9% 1.6% 3.4%

CTC-4KB 3.9% 2.9% 3.3% 2.2% 3.6%
CTC-32KB 3.9% 3.2% 3.5% 2.4% 3.9%

Applu Art Mgrid Swim FP-Avg
SEQ1 3.3% 3.9% 3.2% 3.8% 3.6%
SEQ3 2.9% 3.7% 3.0% 4.1% 3.4%

CTC-4KB 2.7% 2.7% 3.0% 4.3% 3.2%
CTC-32KB 2.6% 2.8% 2.8% 4.6% 3.2%

5.2 Performance
Table 4 shows performance improvement achieved when using a
PBAFM compared to the 4 non-adaptive designs. A negative
value means that performance gets worse in our adaptive
approach.

Table 4. Performance improvement achieved by PBAFM over
4 different non-adaptive designs (SEQ1, SEQ3, CTC-4K, and
CTC-32K).

Gap Bzip Parser Twolf Crafty
SEQ1 7.6% 16.1% 3.8% 2.3% 6.5%
SEQ3 3.5% 2.2% 0.3% 0.0% 0.7%

CTC-4KB 1.7% 0.7% 0.6% 1.1% 2.9%
CTC-32KB 1.1% 0.7% 0.6% 1.0% 2.9%

Vortex Gcc Gzip Vpr INT-Avg
SEQ1 17.3% 7.0% 8.8% 3.9% 8.1%
SEQ3 5.1% 4.3% 3.7% 0.2% 2.2%

CTC-4KB 1.5% 0.5% 0.9% 0.3% 1.1%
CTC-32KB 0.4% 0.5% 0.7% 0.3% 0.9%

Applu Art Mgrid Swim FP-Avg
SEQ1 0.3% 0.6% -0.1% -0.3% 0.1%
SEQ3 0.3% 0.3% -0.1% -0.3% 0.1%

CTC-4KB 0.0% 0.1% 0.0% -0.2% 0.0%
CTC-32KB 0.0% 0.1% 0.0% -0.3% 0.0%

Using PBAFM, we obtain performance improvements in most
integer applications. Each module employs an optimal fetch
configuration, which provides sufficient supply of instructions
and yet without using an overly aggressive policy that can
introduce many wrong-path instructions and negatively impacting
performance. Moreover, in modules where a small trace cache or
BTB is sufficient, keeping the structure size small also helps to
reduce conflict in the disabled portion of the structures, which
indirectly benefits the execution of other modules. For some
modules of the floating point applications, the trace cache is
simply not effective, so PBAFM ends up disabling it in these
cases. As can be seen from Table 4, the performance implication
is thus negligible.

6. RELATED WORK
Researchers have proposed other solutions to improve the fetch
unit management. Most of these proposals include a trace cache

46

structure in the fetch stage, and our proposal can work on top of
these designs to further improve the fetch mechanism.
In [2] and [3], Hu et al. propose two new models for a fetch stage.
The first model, which they call Selective Trace Cache, uses
compiler and hardware support to control trace cache lookup
(avoided in the cases where trace cache behaves poorly). This
approach can achieve some energy reduction in the fetch stage,
but at the cost of some performance loss, compared to a CTC. A
second approach proposed in this prior work is a Direction
Predictor based Trace Cache (DPTC). In this case, the selection
for the fetch unit configuration is dynamic, eliminating the need
for recompilation and ISA modification. However, this comes at
the cost of some overhead. The model can reduce energy
consumption in the fetch mechanism, but again with some
performance loss compared to CTC.
In [13], Buyuktosunoglu et al. introduce a scheme based on a
combination of fetch gating and issue queue adaptation to jointly
adapt the fetch and issue stages so as to match the current
parallelism characteristics of the application.
In [14], Santana et al. propose software techniques to reorganize
the code so that the fetch engine complexity can be reduced. In a
similar way, Ramirez et al. [15] also propose compiler
optimizations to improve the layout of instructions.
In [16], Co and Skadron perform a set of fetch engine area and
associativity experiments as well as a next trace predictor design
space exploration.
In the broader domain of low-power design, some researchers
have proposed structure resizing for achieving energy savings. In
particular, the associativity [4] or the number of sets [5] of a
cache can be adjusted dynamically to the most convenient
configuration. We have applied some of these techniques to resize
trace cache and BTB when needed.
Finally, in our prior work, we demonstrated the effectiveness of
an adaptive design of the branch prediction, including the
direction predictor and the BTB [6].

7. CONCLUSIONS
In this paper we have proposed PBAFM, a new adaptive fetch
mechanism that adjusts the underlying hardware to meet the
application’s demands. Our design switches to less expensive
configurations when appropriate, resulting in significant energy
savings in the fetch unit. In doing so, the performance is not
compromised. In fact, for integer applications, we even obtain
modest performance gain relative to a very aggressive fetch unit.
Comparing PBAFM with the most aggressive fetch unit design
studied (a 32KB CTC), energy consumption in the fetch unit is
reduced by 34.1% on average and the performance is improved by
0.6%. The combined effect is a 3.7% processor-wide energy
reduction. Compared to a baseline fetch unit (SEQ1), PBAFM
improves performance by 5.7%, while saving 26.8% and 5.5%
energy in the fetch unit and the whole processor, respectively.

8. REFERENCES
[1] E. Rotenberg, S. Bennett, and J. E. Smith. Trace Cache: A

low latency approach to high bandwidth instruction fetching.

International Symposium on Microarchitecture. November,
1996.

[2] J. S. Hu, N. Vijaykrishnan, M. J. Irwin, M. Kandemir.
Optimizing Power Efficiency in Trace Cache Fetch Unit.
Technical Report, Department of Computer Science and
Engineering, Pennsylvania State University, 2003.

[3] J. S. Hu, N. Vijaykrishnan, M. J. Irwin, M. Kandemir. Using
Dynamic Branch Behavior for Power-Efficient Instruction
Fetch. International Symposium on VLSI, February, 2003.

[4] D. H. Albonesi. Selective Cache Ways: On-Demand Cache
Resource Allocation. Journal of Instruction-Level
Parallelism, Vol. 2. May, 2000.

[5] S. Yang, M. D. Powell, Babak Falsafi, K. Roy, and T. N.
Vijaykumar. An Integrated Circuit/Architecture Approach to
Reducing Leakage in Deep-Submicron High-Performance I-
Caches. International Symposium on High-Performance
Computer Architecture, January, 2001.

[6] M. C. Huang, D. Chaver, L. Pinuel, M. Prieto, and F. Tirado.
Customizing the Branch Predictor to Reduce Complexity and
Energy Consumption. IEEE Micro 23(5):12-25, September
2003.

[7] Wei Liu, and M. C. Huang. EXPERT: Expedited Simulation
Exploiting Program Behavior Repetition. International
Conference on Supercomputing, June 2004.

[8] M. C. Huang, J. Renau, J. Torrellas. Positional Adaptation of
Processors: Application to Energy Reduction. International
Symposium on Computer Architecture, June 2003.

[9] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. McGraw-Hill, 1989, pp. 333-336.

[10] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
Infrastructure for Computer System Modeling. Computer,
35(2), February 2002.

[11] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations., International Symposium on Computer
Architecture, July, 2001.

[12] T. Y. Yeh and Y. N. Patt. Alternative Implementations of
Two-Level Adaptive Branch Prediction. International
Symposium on Computer Architecture, May, 1992.

[13] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P.
Bose. Energy Efficient Co-Adaptive Instruction Fetch and
Issue. Computer Architecture News, Vol. 31. May, 2003.

[14] O. J. Santana, A. Ramirez, M. Valero. Reducing Fetch
Architecture Complexity Using Procedure Inlining.
INTERACT-8, Madrid, Spain. February 2004.

[15] A. Ramirez, O. J. Santana, J. L. Larriba-Pey, M. Valero.
Fetching instruction streams. International Symposium on
Microarchitecture, November, 2002.

[16] Michele Co and Kevin Skadron. Evaluating the Energy
Efficiency of Trace Caches. Technical Report CS-2003-19,
University of Virginia, 2003.

47

