182 research outputs found

    Increased risk of malignancies in a population-based study of 818 soft-tissue sarcoma patients

    Get PDF
    Soft-tissue sarcomas (STS) have been associated with various rare cancer syndromes and occur at increased frequencies in survivors of childhood cancer. Also adult patients with STS have been suggested to be at an increased risk of additional malignancies. After exclusion of syndrome-associated and radiation-induced sarcomas, we studied multiple primary malignancies in a population-based cohort of 818 patients with primary STS of the extremities and the trunk wall. In total, 203 other malignancies developed in 164 (20%) patients median 10 (0–32) years before and median 4 (0–35) years after the sarcoma diagnosis. Standardised morbidity ratios (SMRs) were determined for primary malignancies following a STS. Hereby individuals who had developed a STS were identified to be at increased risk of second primary malignancies (SMR for all malignant tumours=1.3; 95% CI=1.0–1.5; P=0.02) with STS being the only specific tumour type that occurred at an increased risk (SMR=17.6; 95% CI=8.1–33.5; P<0.001). Hence, this population-based series demonstrates a high frequency of second primary tumours among STS patients and indicates a particularly increased risk of developing a new STS

    Internal accounting practices at Whitbread & Company c.1890-1925

    Get PDF
    This paper examines internal accounting practices at Whitbread & Company from c. 1890 to 1925. At this time, there was an increasing interest in cost accounting, but there is little detailed extant research on general internal accounting practices of firms. The brewing sector, we suggest, is a potentially fruitful realm to further our knowledge of this time. Drawing on the Whitbread brewery archival records, we chart the internal accounting practices of the company. Our findings reveal a stable set of accounting practices, focused mainly on bookkeeping, although the firm’s auditor produced some reports which may have been useful for management decision-making. We argue these practices were highly institutionalised, and seemingly resistant to external forces present in the company’s environment

    Autophagy Impairment Induces Premature Senescence in Primary Human Fibroblasts

    Get PDF
    BACKGROUND:Recent studies have demonstrated that activation of autophagy increases the lifespan of organisms from yeast to flies. In contrast to the lifespan extension effect in lower organisms, it has been reported that overexpression of unc-51-like kinase 3 (ULK3), the mammalian homolog of autophagy-specific gene 1 (ATG1), induces premature senescence in human fibroblasts. Therefore, we assessed whether the activation of autophagy would genuinely induce premature senescence in human cells. METHODOLOGY/PRINCIPAL FINDINGS:Depletion of ATG7, ATG12, or lysosomal-associated membrane protein 2 (Lamp2) by transfecting siRNA or infecting cells with a virus containing gene-specific shRNA resulted in a senescence-like state in two strains of primary human fibroblasts. Prematurely senescent cells induced by autophagy impairment exhibited the senescent phenotypes, similar to the replicatively senescent cells, such as increased senescence associated Ξ²-galactosidase (SA-Ξ²-gal) activity, reactive oxygen species (ROS) generation, and accumulation of lipofuscin. In addition, expression levels of ribosomal protein S6 kinase1 (S6K1), p-S6K1, p-S6, and eukaryotic translation initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) in the mammalian target of rapamycin (mTOR) pathway and beclin-1, ATG7, ATG12-ATG5 conjugate, and the sequestosome 1 (SQSTM1/p62) monomer in the autophagy pathway were decreased in both the replicatively and the autophagy impairment-induced prematurely senescent cells. Furthermore, it was found that ROS scavenging by N-acetylcysteine (NAC) and inhibition of p53 activation by pifithrin-Ξ± or knockdown of p53 using siRNA, respectively, delayed autophagy impairment-induced premature senescence and restored the expression levels of components in the mTOR and autophagy pathways. CONCLUSION:Taken together, we concluded that autophagy impairment induces premature senescence through a ROS- and p53-dependent manner in primary human fibroblasts

    Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections, xenografts and established cell lines of pancreatic cancer

    Get PDF
    BACKGROUND: Chemotherapy for pancreatic carcinoma often has severe side effects that limit its efficacy. The glucocorticoid (GC) dexamethasone (DEX) is frequently used as co-treatment to prevent side effects of chemotherapy such as nausea, for palliative purposes and to treat allergic reactions. While the potent pro-apoptotic properties and the supportive effects of GCs to tumour therapy in lymphoid cells are well studied, the impact of GCs to cytotoxic treatment of pancreatic carcinoma is unknown. METHODS: A prospective study of DEX-mediated resistance was performed using a pancreatic carcinoma xenografted to nude mice, 20 surgical resections and 10 established pancreatic carcinoma cell lines. Anti-apoptotic signaling in response to DEX was examined by Western blot analysis. RESULTS: In vitro, DEX inhibited drug-induced apoptosis and promoted the growth in all of 10 examined malignant cells. Ex vivo, DEX used in physiological concentrations significantly prevented the cytotoxic effect of gemcitabine and cisplatin in 18 of 20 freshly isolated cell lines from resected pancreatic tumours. No correlation with age, gender, histology, TNM and induction of therapy resistance by DEX co-treatment could be detected. In vivo, DEX totally prevented cytotoxicity of chemotherapy to pancreatic carcinoma cells xenografted to nude mice. Mechanistically, DEX upregulated pro-survival factors and anti-apoptotic genes in established pancreatic carcinoma cells. CONCLUSION: These data show that DEX induces therapy resistance in pancreatic carcinoma cells and raise the question whether GC-mediated protection of tumour cells from cancer therapy may be dangerous for patients

    Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin

    Get PDF
    Author Posting. Β© The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature America for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 12 (2009): 864-871, doi:10.1038/nn.2346.Selected vulnerability of neurons in Huntington’s disease (HD) suggests alterations in a cellular process particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt) inhibits fast axonal transport (FAT) in various cellular and animal HD models (mouse and squid), but the molecular basis of this effect remains unknown. Here we show that polyQ-Htt inhibits FAT through a mechanism involving activation of axonal JNK. Accordingly, increased activation of JNK was observed in vivo in cellular and animal HD models. Additional experiments indicate that polyQ-Htt effects on FAT are mediated by the neuron-specific JNK3, and not ubiquitously expressed JNK1, providing a molecular basis for neuron-specific pathology in HD. Mass spectrometry identified a residue in the kinesin-1 motor domain phosphorylated by JNK3, and this modification reduces kinesin-1 binding to microtubules. These data identify JNK3 as a critical mediator of polyQ-Htt toxicity and provides a molecular basis for polyQ-Htt-induced inhibition of FAT.This work was supported by 2007/2008 MBL summer fellowship to GM; an HDSA grant to GM; NIH grants MH066179 to GB; and ALSA, Muscular Dystrophy Association, and NIH (NS23868, NS23320, NS41170) grants to STB

    Artesunate induces necrotic cell death in schwannoma cells

    Get PDF
    Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity

    A Gene Regulatory Network for Root Epidermis Cell Differentiation in Arabidopsis

    Get PDF
    The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 β€œcore” root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network

    De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.

    Get PDF
    Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that deΒ novo heterozygous mutations in WASF1 cause a rare form of intellectual disability
    • …
    corecore