168 research outputs found
AquaCrop-OS: An open source version of FAO's crop water productivity model
AbstractCrop simulation models are valuable tools for quantifying crop yield response to water, and for devising strategies to improve agricultural water management. However, applicability of the majority of crop models is limited greatly by a failure to provide open-access to model source code. In this study, we present an open-source version of the FAO AquaCrop model, which simulates efficiently water-limited crop production across diverse environmental and agronomic conditions. Our model, called AquaCrop-OpenSource (AquaCrop-OS), can be run in multiple programming languages and operating systems. Support for parallel execution reduces significantly simulation times when applying the model in large geospatial frameworks, for long-run policy analysis, or for uncertainty assessment. Furthermore, AquaCrop-OS is compliant with the Open Modelling Interface standard facilitating linkage to other disciplinary models, for example to guide integrated water resources planning
Structure optimization in an off-lattice protein model
We study an off-lattice protein toy model with two species of monomers
interacting through modified Lennard-Jones interactions. Low energy
configurations are optimized using the pruned-enriched-Rosenbluth method
(PERM), hitherto employed to native state searches only for off lattice models.
For 2 dimensions we found states with lower energy than previously proposed
putative ground states, for all chain lengths . This indicates that
PERM has the potential to produce native states also for more realistic protein
models. For , where no published ground states exist, we present some
putative lowest energy states for future comparison with other methods.Comment: 4 pages, 2 figure
A review of Monte Carlo simulations of polymers with PERM
In this review, we describe applications of the pruned-enriched Rosenbluth
method (PERM), a sequential Monte Carlo algorithm with resampling, to various
problems in polymer physics. PERM produces samples according to any given
prescribed weight distribution, by growing configurations step by step with
controlled bias, and correcting "bad" configurations by "population control".
The latter is implemented, in contrast to other population based algorithms
like e.g. genetic algorithms, by depth-first recursion which avoids storing all
members of the population at the same time in computer memory. The problems we
discuss all concern single polymers (with one exception), but under various
conditions: Homopolymers in good solvents and at the point, semi-stiff
polymers, polymers in confining geometries, stretched polymers undergoing a
forced globule-linear transition, star polymers, bottle brushes, lattice
animals as a model for randomly branched polymers, DNA melting, and finally --
as the only system at low temperatures, lattice heteropolymers as simple models
for protein folding. PERM is for some of these problems the method of choice,
but it can also fail. We discuss how to recognize when a result is reliable,
and we discuss also some types of bias that can be crucial in guiding the
growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011
Morphology and foliar chemistry of containerized Abies fraseri (Pursh) Poir. seedlings as affected by water availability and nutrition
• We present the results of a two-year (2007–2008) greenhouse study investigating the
effect of water availability and nitrogen fertilization on the growth, biomass
partitioning, and foliar nutrient content of Abies fraseri (Pursh)
Poir.
• Fertilizer and moisture content (irrigation) were varied in a factorial experiment
combining four levels of irrigation and three levels of fertilization to evaluate growth
and foliar nutrient content. In addition, a numerical optimization was used to estimate
appropriate levels of each factor necessary to achieve simulated goals for response
variables.
• Irrigation increased the height growth by 12 to 35% depending on the fertilization
treatment (p = 0.0001). Fertilization increased height growth by 10 to
26% (p = 0.02). A similar response was observed for stem diameter growth
(SDG). Total biomass accumulation increased as result of positive response of stem and
root biomass development, and foliar nitrogen content was positively affected by nitrogen
fertilization and negatively affected by irrigation. The numerical optimization for
simulated target growth and nitrogen content responses produced levels of input
combinations with high desirability factors to achieve the target responses.
• These results suggest that nutrient addition is a strong determining factor for early
development of this species. The improved growth efficiency in this study is likely
attributed to a combination of factors including, improved photosynthetic capacity,
decreased stomatal limitations, or increased resource allocation to stems
Photosynthesis, stomatal conductance and leaf water potential in crabwood (Carapa guianensis)
Leaf water potential is one of the most important factors affecting stomatal functioning. The aim of this study was to assess the effect of variation in diurnal irradiance and vapour pressure deficit on photosynthesis (A), stomatal conductance (g s) and leaf water potential (psi) in Carapa guianensis (Aubl.). Data were collected from 07:00 to 17:00 h. Photosynthetic rates reached a maximum (2.5 µmol m-2 s-1) at 10:00 h, thereafter declined to a minimum of 1 µmol m-2 s-1 at 16:00 h. Stomatal conductance oscillated during the day, from 0.04 mol m-2 s-1 (at midday) to 0.02.mol.m-2.s-1 at the end of the afternoon. Leaf water potential was higher early in the morning (-0.3 MPa) and lower (-0.75 MPa) at mid-afternoon (14:30 -15:00 h). After reaching a minimum, psi increased up to -0.64 MPa at sunset. Photosynthetic rates increased linearly as a function of g s (P < 0.01). Also there was a positive relationship between psi and g s (P< 0.01). Photosynthetic rates declined during the day after reaching a peak early in the morning, which makes clear that environmental factors that influence psi greatly affect carbon assimilation of C. guianensis.O potencial hídrico da folha é um dos fatores mais importantes que afetam o funcionamento dos estômatos. O objetivo deste trabalho foi avaliar o efeito da variação diurna na irradiância e déficit de pressão de vapor (DPV) na fotossíntese (A), condutância estomática (g s) e potencial hídrico da folha (psi) em Carapa guianensis (Aubl.). Os dados foram coletados de 07:00 às 17:00 h. A taxa fotossintética atingiu um valor máximo (2,5 µmol m-2 s-1) às 10:00 h, depois declinou até atingir um mínimo de 1 µmolm-2 s-1 às 16:00 h. A condutância estomática oscilou durante o dia, de 0,04 molm-2s-1 (ao meio dia) para 0,02 molm-2s- 1 no final da tarde. O potencial hídrico da folha foi máximo nas primeiras horas do dia (-0,3 MPa) e mínimo (-0,75 MPa) no meio da tarde (14:30 a 15:00 h). Após ter alcançado um mínimo, o psi aumentou até -0,64 MPa no fim da tarde. A taxa fotossintética aumentou linearmente em função do g s (P < 0,01). Também houve uma relação positiva entre psi e g s (P < 0,01). A taxa fotossintética declinou durante o dia após ter alcançado um pico no início da manhã, demonstrando que os fatores ambientais que afetam o psi têm efeito significativo na assimilação do carbono de C. guianensis
- …