691 research outputs found

    ApoE Receptor 2 Regulates Synapse and Dendritic Spine Formation

    Get PDF
    Apolipoprotein E receptor 2 (ApoEr2) is a postsynaptic protein involved in long-term potentiation (LTP), learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory.In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11Ξ± and PSD-95, affected synapse and dendritic spine formation. X11Ξ± decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density.These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11Ξ± and PSD-95

    Quantum teleportation using active feed-forward between two Canary Islands

    Full text link
    Quantum teleportation [1] is a quintessential prerequisite of many quantum information processing protocols [2-4]. By using quantum teleportation, one can circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum states to a party whose location is even unknown over arbitrary distances. Ever since the first experimental demonstrations of quantum teleportation of independent qubits [6] and of squeezed states [7], researchers have progressively extended the communication distance in teleportation, usually without active feed-forward of the classical Bell-state measurement result which is an essential ingredient in future applications such as communication between quantum computers. Here we report the first long-distance quantum teleportation experiment with active feed-forward in real time. The experiment employed two optical links, quantum and classical, over 143 km free space between the two Canary Islands of La Palma and Tenerife. To achieve this, the experiment had to employ novel techniques such as a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors, and entanglement-assisted clock synchronization. The average teleported state fidelity was well beyond the classical limit of 2/3. Furthermore, we confirmed the quality of the quantum teleportation procedure (without feed-forward) by complete quantum process tomography. Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation

    Prior Mating Experience Modulates the Dispersal of Drosophila in Males More Than in Females

    Get PDF
    Cues from both an animal’s internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene

    A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications

    Get PDF
    Soil thermal conductivity is an important factor in the design of energy foundations and other ground heat exchanger systems. It can be determined by a field thermal response test, which is both costly and time consuming, but tests a large volume of soil. Alternatively, cheaper and quicker laboratory test methods may be applied to smaller soil samples. This paper investigates two different laboratory methods: the steady-state thermal cell and the transient needle probe. U100 soil samples were taken during the site investigation for a small diameter test pile, for which a thermal response test was later conducted. The thermal conductivities of the samples were measured using the two laboratory methods. The results from the thermal cell and needle probe were significantly different, with the thermal cell consistently giving higher values for thermal conductivity. The main difficulty with the thermal cell was determining the rate of heat flow, as the apparatus experiences significant heat losses. The needle probe was found to have fewer significant sources of error, but tests a smaller soil sample than the thermal cell. However, both laboratory methods gave much lower values of thermal conductivity compared to the in situ thermal response test. Possible reasons for these discrepancies are discussed, including sample size, orientation and disturbance

    Brugia malayi Antigen (BmA) inhibits HIV-1 trans-infection but neither BmA nor ES-62 alter HIV-1 infectivity of DC induced CD4+ Th-cells

    Get PDF
    One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-Ξ±. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs

    The Thermal Behaviour of Three Different Auger Pressure Grouted Piles Used as Heat Exchangers

    Get PDF
    Three auger pressure grouted (APG) test piles were constructed at a site in Richmond, Texas. The piles were each equipped with two U-loops of heat transfer pipes so that they could function as pile heat exchangers. The piles were of two different diameters and used two different grouts, a standard APG grout and a thermally enhanced grout. Thermal response tests, where fluid heated at a constant rate is circulated through the pipe loops, were carried out on the three piles, utilising either single or double loops. The resulting test data can be used to determine the surrounding soil thermal conductivity and the pile thermal resistance, both essential design parameters for ground source heat pump systems using pile heat exchangers. This paper uses parameter estimation techniques to fit empirical temperature response curves to the thermal response test data and compares the results with standard line source interpretation techniques. As expected, the thermal response tests with double loops result in smaller thermal resistances than the same pile when the test was run with a single loop. Back analysis of the pile thermal resistance also allows calculation of the grout thermal properties. The thermally enhanced grout is shown to have inferior thermal properties than the standard APG grout. Together these analyses demonstrate the importance of pile size, grout thermal properties and pipe positions in controlling the thermal behaviour of heat exchanger piles

    Comparison of two different models for pile thermal response test interpretation

    Get PDF
    Thermal response tests (TRTs) are regularly used to characterise the thermal resistance of borehole heat exchangers and to assess the thermal conductivity of the surrounding ground. It is becoming common to apply the same in situ testing technique to pile heat exchangers, despite international guidance suggesting that TRTs should be limited to hole diameters of 152 mm (6 in.). This size restriction arises from the increased thermal inertia of larger diameter heat exchangers, which invalidates the assumption of a steady state within the concrete needed to interpret the test data by traditional line source analysis techniques. However, new methods of analysis for pile heat exchangers have recently been developed that take account of the transient behaviour of the pile concrete. This paper applies these new methods to data from a multi-stage TRT conducted on a small diameter test pile. The thermal conductivity and thermal resistance determined using this method are then compared with those from traditional analytical approaches based on a line source analysis. Differences between the approaches are discussed, along with the observation that the thermal resistance may not be constant over the different test stages

    The FGLamide-Allatostatins Influence Foraging Behavior in Drosophila melanogaster

    Get PDF
    Allatostatins (ASTs) are multifunctional neuropeptides that generally act in an inhibitory fashion. ASTs were identified as inhibitors of juvenile hormone biosynthesis. Juvenile hormone regulates insect metamorphosis, reproduction, food intake, growth, and development. Drosophila melanogaster RNAi lines of PheGlyLeu-amide-ASTs (FGLa/ASTs) and their cognate receptor, Dar-1, were used to characterize roles these neuropeptides and their respective receptor may play in behavior and physiology. Dar-1 and FGLa/AST RNAi lines showed a significant reduction in larval foraging in the presence of food. The larval foraging defect is not observed in the absence of food. These RNAi lines have decreased for transcript levels which encodes cGMP- dependent protein kinase. A reduction in the for transcript is known to be associated with a naturally occuring allelic variation that creates a sitter phenotype in contrast to the rover phenotype which is caused by a for allele associated with increased for activity. The sitting phenotype of FGLa/AST and Dar-1 RNAi lines is similar to the phenotype of a deletion mutant of an AST/galanin-like receptor (NPR-9) in Caenorhabditis elegans. Associated with the foraging defect in C. elegans npr-9 mutants is accumulation of intestinal lipid. Lipid accumulation was not a phenotype associated with the FGLa/AST and Dar-1 RNAi lines

    Critical international relations and the impact agenda

    Get PDF
    How should critical International Relations (IR) scholars approach the β€˜impact agenda’? While most have been quite resistant to it, I argue in this essay that critical IR should instead embrace the challenge of impact – and that both IR as a field and the impact agenda more broadly would gain greatly from it doing so. I make this case through three steps. I show, firstly, that critical IR has till now been very much at the impact agenda’s margins, and that this situation contrasts strikingly with its well-established importance within IR teaching and research. I argue, secondly, that critical IR scholars both could and should do more impact work – that the current political conjuncture demands it, that many of the standard objections to doing so are misplaced, and indeed that β€˜critical’ modes of research are in some regards better suited than β€˜problem-solving’ ones to generating meaningful change – and offer a series of recommended principles for undertaking critically-oriented impact and engagement work. But I also argue, thirdly, that critical social science holds important lessons for the impact agenda, and that future impact assessments need to take these lessons on board – especially if critical IR scholarship is to embrace impact more fully. Critical IR, I submit, should embrace impact; but at the same time, research councils and assessments could do with modifying their approach to it, including by embracing a more critical and political understanding of what impact is and how it is achieved
    • …
    corecore