132 research outputs found

    Distribution of motor unit potential velocities in short static and prolonged dynamic contractions at low forces: use of the within-subject’s skewness and standard deviation variables

    Get PDF
    Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as position tasks, applying forces up to 20% of maximal voluntary contraction (MVC). Four variables, derived from the inter-peak latency technique, were used to describe changes in the surface electromyography signal: the mean muscle fibre conduction velocity (CV), the proportion between slow and fast MUPs expressed as the within-subject skewness of MUP velocities, the within-subject standard deviation of MUP velocities [SD-peak velocity (PV)], and the amount of MUPs per second (peak frequency = PF). In short static tests and the initial phase of prolonged tests, larger forces induced an increase of the CV and PF, accompanied with the shift of MUP velocities towards higher values, whereas the SD-PV did not change. During the first 1.5–2 min of the prolonged lower force levels tests (unloaded, and loaded 5 and 10% MVC) the CV and SD-PV slightly decreased and the MUP velocities shifted towards lower values; then the three variables stabilized. The PF values did not change in these tests. However, during the prolonged higher force (20% MVC) test, the CV decreased and MUP velocities shifted towards lower values without stabilization, while the SD-PV broadened and the PF decreased progressively. It is argued that these combined results reflect changes in both neural regulatory strategies and muscle membrane state

    Force variability during isometric wrist flexion in highly skilled and sedentary individuals

    Get PDF
    The association of expertness in specific motor activities with a higher ability to sustain a constant application of force, regardless of muscle length, has been hypothesized. Ten highly skilled (HS group) young tennis and handball athletes and 10 sedentary (S group) individuals performed maximal and submaximal (5, 10, 20, 50, and 75% of the MVC) isometric wrist flexions on an isokinetic dynamometer (Kin-Com, Chattanooga). The wrist joint was fixed at five different angles (230, 210, 180, 150, and 1300). For each position the percentages of the maximal isometric force were calculated and participants were asked to maintain the respective force level for 5 s. Electromyographic (EMG) activation of the Flexor Carpi Ulnaris and Extensor Digitorum muscles was recorded using bipolar surface electrodes. No significant differences were observed in maximal isometric strength between HS and S groups. Participants of HS group showed significantly (P < 0.05) smaller force coefficient of variability (CV) and SD values at all submaximal levels of MVC at all wrist angles. The CV and SD values remained unaltered regardless of wrist angle. No difference in normalized agonist and antagonist EMG activity was observed between the two groups. It is concluded that long-term practice could be associated with decreased isometric force variability independently from muscular length and coactivation of the antagonist muscles

    Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training.

    Get PDF
    PURPOSE: Whilst neural and morphological adaptations following resistance training (RT) have been investigated extensively at a group level, relatively little is known about the contribution of specific physiological mechanisms, or pre-training strength, to the individual changes in strength following training. This study investigated the contribution of multiple underpinning neural [agonist EMG (QEMGMVT), antagonist EMG (HEMGANTAG)] and morphological variables [total quadriceps volume (QUADSVOL), and muscle fascicle pennation angle (QUADSθ p)], as well as pre-training strength, to the individual changes in strength after 12 weeks of knee extensor RT. METHODS: Twenty-eight healthy young men completed 12 weeks of isometric knee extensor RT (3/week). Isometric maximum voluntary torque (MVT) was assessed pre- and post-RT, as were simultaneous neural drive to the agonist (QEMGMVT) and antagonist (HEMGANTAG). In addition QUADSVOL was determined with MRI and QUADSθ p with B-mode ultrasound. RESULTS: Percentage changes (∆) in MVT were correlated to ∆QEMGMVT (r = 0.576, P = 0.001), ∆QUADSVOL (r = 0.461, P = 0.014), and pre-training MVT (r = -0.429, P = 0.023), but not ∆HEMGANTAG (r = 0.298, P = 0.123) or ∆QUADSθ p (r = -0.207, P = 0.291). Multiple regression analysis revealed 59.9% of the total variance in ∆MVT after RT to be explained by ∆QEMGMVT (30.6%), ∆QUADSVOL (18.7%), and pre-training MVT (10.6%). CONCLUSIONS: Changes in agonist neural drive, quadriceps muscle volume and pre-training strength combined to explain the majority of the variance in strength changes after knee extensor RT (~60%) and adaptations in agonist neural drive were the most important single predictor during this short-term intervention

    The placebo effect in the motor domain is differently modulated by the external and internal focus of attention

    Get PDF
    Among the cognitive strategies that can facilitate motor performance in sport and physical practice, a prominent role is played by the direction of the focus of attention and the placebo effect. Consistent evidence converges in indicating that these two cognitive functions can influence the motor outcome, although no study up-to-now tried to study them together in the motor domain. In this explorative study, we combine for the first time these approaches, by applying a placebo procedure to increase force and by manipulating the focus of attention with explicit verbal instructions. Sixty healthy volunteers were asked to perform abduction movements with the index finger as strongly as possible against a piston and attention could be directed either toward the movements of the finger (internal focus, IF) or toward the movements of the piston (external focus, EF). Participants were randomized in 4 groups: two groups underwent a placebo procedure (Placebo-IF and Placebo-EF), in which an inert treatment was applied on the finger with verbal information on its positive effects on force; two groups underwent a control procedure (Control-IF and Control-EF), in which the same treatment was applied with overt information about its inefficacy. The placebo groups were conditioned about the effects of the treatment with a surreptitious amplification of a visual feedback signalling the level of force. During the whole procedure, we recorded actual force, subjective variables and electromyography from the hand muscles. The Placebo-IF group had higher force levels after the procedure than before, whereas the Placebo-EF group had a decrease of force. Electromyography showed that the Placebo-IF group increased the muscle units recruitment without changing the firing rate. These findings show for the first time that the placebo effect in motor performance can be influenced by the subject\u2019s attentional focus, being enhanced with the internal focus of attention

    Finding the engram.

    Get PDF
    Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent \u27capture\u27 studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram

    Behavioral modeling of human choices reveals dissociable effects of physical effort and temporal delay on reward devaluation

    Get PDF
    There has been considerable interest from the fields of biology, economics, psychology, and ecology about how decision costs decrease the value of rewarding outcomes. For example, formal descriptions of how reward value changes with increasing temporal delays allow for quantifying individual decision preferences, as in animal species populating different habitats, or normal and clinical human populations. Strikingly, it remains largely unclear how humans evaluate rewards when these are tied to energetic costs, despite the surge of interest in the neural basis of effort-guided decision-making and the prevalence of disorders showing a diminished willingness to exert effort (e.g., depression). One common assumption is that effort discounts reward in a similar way to delay. Here we challenge this assumption by formally comparing competing hypotheses about effort and delay discounting. We used a design specifically optimized to compare discounting behavior for both effort and delay over a wide range of decision costs (Experiment 1). We then additionally characterized the profile of effort discounting free of model assumptions (Experiment 2). Contrary to previous reports, in both experiments effort costs devalued reward in a manner opposite to delay, with small devaluations for lower efforts, and progressively larger devaluations for higher effort-levels (concave shape). Bayesian model comparison confirmed that delay-choices were best predicted by a hyperbolic model, with the largest reward devaluations occurring at shorter delays. In contrast, an altogether different relationship was observed for effort-choices, which were best described by a model of inverse sigmoidal shape that is initially concave. Our results provide a novel characterization of human effort discounting behavior and its first dissociation from delay discounting. This enables accurate modelling of cost-benefit decisions, a prerequisite for the investigation of the neural underpinnings of effort-guided choice and for understanding the deficits in clinical disorders characterized by behavioral inactivity

    Open Data for Global Science

    Get PDF
    The global science system stands at a critical juncture. On the one hand, it is overwhelmed by a hidden avalanche of ephemeral bits that are central components of modern research and of the emerging ‘cyberinfrastructure’4 for e-Science.5 The rational management and exploitation of this cascade of digital assets offers boundless opportunities for research and applications. On the other hand, the ability to access and use this rising flood of data seems to lag behind, despite the rapidly growing capabilities of information and communication technologies (ICTs) to make much more effective use of those data. As long as the attention for data policies and data management by researchers, their organisations and their funders does not catch up with the rapidly changing research environment, the research policy and funding entities in many cases will perpetuate the systemic inefficiencies, and the resulting loss or underutilisation of valuable data resources derived from public investments. There is thus an urgent need for rationalised national strategies and more coherent international arrangements for sustainable access to public research data, both to data produced directly by government entities and to data generated in academic and not-for-profit institutions with public funding. In this chapter, we examine some of the implications of the ‘data driven’ research and possible ways to overcome existing barriers to accessibility of public research data. Our perspective is framed in the context of the predominantly publicly funded global science system. We begin by reviewing the growing role of digital data in research and outlining the roles of stakeholders in the research community in developing data access regimes. We then discuss the hidden costs of closed data systems, the benefits and limitations of openness as the default principle for data access, and the emerging open access models that are beginning to form digitally networked commons. We conclude by examining the rationale and requirements for developing overarching international principles from the top down, as well as flexible, common-use contractual templates from the bottom up, to establish data access regimes founded on a presumption of openness, with the goal of better capturing the benefits from the existing and future scientific data assets. The ‘Principles and Guidelines for Access to Research Data from Public Funding’ from the Organisation for Economic Cooperation and Development (OECD), reported on in another article by Pilat and Fukasaku,6 are the most important recent example of the high-level (inter)governmental approach. The common-use licenses promoted by the Science Commons are a leading example of flexible arrangements originating within the community. Finally, we should emphasise that we focus almost exclusively on the policy—the institutional, socioeconomic, and legal aspects of data access—rather than on the technical and management practicalities that are also important, but beyond the scope of this article

    Age-dependent motor unit remodelling in human limb muscles.

    Get PDF
    Voluntary control of skeletal muscle enables humans to interact with and manipulate the environment. Lower muscle mass, weakness and poor coordination are common complaints in older age and reduce physical capabilities. Attention has focused on ways of maintaining muscle size and strength by exercise, diet or hormone replacement. Without appropriate neural innervation, however, muscle cannot function. Emerging evidence points to a neural basis of muscle loss. Motor unit number estimates indicate that by age around 71 years, healthy older people have around 40 % fewer motor units. The surviving low- and moderate-threshold motor units recruited for moderate intensity contractions are enlarged by around 50 % and show increased fibre density, presumably due to collateral reinnervation of denervated fibres. Motor unit potentials show increased complexity and the stability of neuromuscular junction transmissions is decreased. The available evidence is limited by a lack of longitudinal studies, relatively small sample sizes, a tendency to examine the small peripheral muscles and relatively few investigations into the consequences of motor unit remodelling for muscle size and control of movements in older age. Loss of motor neurons and remodelling of surviving motor units constitutes the major change in ageing muscles and probably contributes to muscle loss and functional impairments. The deterioration and remodelling of motor units likely imposes constraints on the way in which the central nervous system controls movements
    corecore