20 research outputs found

    Strategies in a metallophyte species to cope with manganese excess

    Get PDF
    The effect of exposure to high Mn concentration was studied in a metallophyte species, Erica andevalensis, using hydroponic cultures with a range of Mn concentrations (0.06, 100, 300, 500, and 700 mg L-1). At harvest, biomass production, element uptake, and biochemical indicators of metal stress (leaf pigments, organic acids, amino acids, phenols, and activities of catalase, peroxidase, superoxide dismutase) were determined in leaves and roots. Increasing Mn concentrations led to a decrease in biomass accumulation, and tip leaves chlorosis was the only toxicity symptom detected. In a similar way, photosynthetic pigments (chlorophylls a and b, and carotenoids) were affected by high Mn levels. Among organic acids, malate and oxalate contents in roots showed a significant increase at the highest Mn concentration, while in leaves, Mn led to an increasing trend in citrate and malate contents. An increase of Mn also induced an increase in superoxide dismutase activity in roots and catalase activity in leaves. As well, significant changes in free amino acids were induced by Mn concentrations higher than 300 mg L-1, especially in roots. No significant changes in phenolic compounds were observed in the leaves, but root phenolics were significantly increased by increasing Mn concentrations in treatments. When Fe supply was increased 10 and 20 times (7–14 mg Fe L-1 as Fe-EDDHA) in the nutrient solutions at the highest Mn concentration (700 mg Mn L-1), it led to significant increases in photosynthetic pigments and biomass accumulation. Manganese was mostly accumulated in the roots, and the species was essentially a Mn excluder. However, considering the high leaf Mn concentration recorded without toxicity symptoms, E. andevalensis might be rated as a Mn-tolerant speciesinfo:eu-repo/semantics/publishedVersio

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Recent progress in chemical approaches for the development of novel neuraminidase inhibitors

    No full text
    Influenza virus is the main cause of an infectious disease called influenza affecting the respiratory system including the throat, nose and lungs. Neuraminidase inhibitors are reagents used to block the enzyme called neuraminidase to prevent the influenza infection from spreading. Neuraminidase inhibitors are widely used in the treatment of influenza infection, but still there is a need to develop more potent agents for the more effective treatment of influenza. Complications of the influenza disease lead to death, and one of these complications is drug resistance; hence, there is an urgent need to develop more effective agents. This review focuses on the recent advances in chemical synthesis pathways used for the development of new neuraminidase agents along with the medicinal aspects of chemically modified molecules, including the structure–activity relationship, which provides further rational designs of more active small molecules
    corecore