518 research outputs found

    Thermalization from gauge/gravity duality: Evolution of singularities in unequal time correlators

    Full text link
    We consider a gauge/gravity dual model of thermalization which consists of a collapsing thin matter shell in asymptotically Anti-de Sitter space. A central aspect of our model is to consider a shell moving at finite velocity as determined by its equation of motion, rather than a quasi-static approximation as considered previously in the literature. By applying a divergence matching method, we obtain the evolution of singularities in the retarded unequal time correlator GR(t,t)G^R(t,t'), which probes different stages of the thermalization. We find that the number of singularities decreases from a finite number to zero as the gauge theory thermalizes. This may be interpreted as a sign of decoherence. Moreover, in a second part of the paper, we show explicitly that the thermal correlator is characterized by the existence of singularities in the complex time plane. By studying a quasi-static state, we show the singularities at real times originate from contributions of normal modes. We also investigate the possibility of obtaining complex singularities from contributions of quasi-normal modes.Comment: 35 pages, 4 figure

    Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT

    Full text link
    We use AdS/CFT correspondence to study two-particle correlations in heavy ion collisions at strong coupling. Modeling the colliding heavy ions by shock waves on the gravity side, we observe that at early times after the collision there are long-range rapidity correlations present in the two-point functions for the glueball and the energy-momentum tensor operators. We estimate rapidity correlations at later times by assuming that the evolution of the system is governed by ideal Bjorken hydrodynamics, and find that glueball correlations in this state are suppressed at large rapidity intervals, suggesting that late-time medium dynamics can not "wash out" the long-range rapidity correlations that were formed at early times. These results may provide an insight on the nature of the "ridge" correlations observed in heavy ion collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde

    Search for sterile neutrino mixing in the MINOS long-baseline experiment

    Get PDF
    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    First-pass perfusion CMR two days after infarction predicts severity of functional impairment six weeks later in the rat heart

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In humans, dynamic contrast CMR of the first pass of a bolus infusion of Gadolinium-based contrast agent has become a standard technique to identify under-perfused regions of the heart and can accurately demonstrate the severity of myocardial infarction. Despite the clinical importance of this method, it has rarely been applied in small animal models of cardiac disease. In order to identify perfusion delays in the infarcted rat heart, here we present a method in which a T<sub>1 </sub>weighted MR image has been acquired during each cardiac cycle.</p> <p>Methods and results</p> <p>In isolated perfused rat hearts, contrast agent infusion gave uniform signal enhancement throughout the myocardium. Occlusion of the left anterior descending coronary artery significantly reduced the rate of signal enhancement in anterior regions of the heart, demonstrating that the first-pass method was sensitive to perfusion deficits. <it>In vivo </it>measurements of myocardial morphology, function, perfusion and viability were made at 2 and 8 days after infarction. Morphology and function were further assessed using cine-MRI at 42 days. The perfusion delay was larger in rat hearts that went on to develop greater functional impairment, demonstrating that first-pass CMR can be used as an early indicator of infarct severity. First-pass CMR at 2 and 8 days following infarction better predicted outcome than cardiac ejection fraction, end diastolic volume or end systolic volume.</p> <p>Conclusion</p> <p>First-pass CMR provides a predictive measure of the severity of myocardial impairment caused by infarction in a rodent model of heart failure.</p

    The Winter Worries of Bats : Past and Present Perspectives on Winter Habitat and Management of Cave Hibernating Bats

    Get PDF
    Winter is a time of fascinating changes in biology for cave-hibernating bats, but it is also a time of vulnerability. Unsurprisingly, assessments of winter habitat for these mammals and how it can be managed have been a focus of many researchers involved with the North American Society for Bat Research over the last 50 years. Over this time, a paradigm shift has occurred in the way scientists think about factors driving selection of winter habitat, especially temperature. To illustrate this change, we review three hypotheses seeking to explain microclimate selection in cavernicolous bats. The first, which we call the “Colder is Better Hypothesis,” posits that bats should select cold microclimates that minimize energy expenditure. The “Hibernation Optimization Hypothesis” suggests that bats should select microclimates that reduce expression of torpor to balance energy conservation against non-energetic costs of hibernation. Finally, the “Thrifty Female Hypothesis” asserts that females should select colder microclimates than males to conserve energy for reproduction. We discuss these hypotheses and the shift from viewing hibernation as a phenomenon driven solely by the need to conserve energy in the context of hibernacula management in North America. We focus on both historical and recent conservation threats, most notably alteration of thermal regimes and the disease white-nose syndrome. We urge against returning to an over-simplified view of winter habitat selection in response to our current conservation challenges.Peer reviewe
    corecore