155 research outputs found

    Bioinformatic analysis of ciliary transition zone proteins reveals insights into the evolution of ciliopathy networks

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: Cilia are critical for diverse functions, from motility to signal transduction, and ciliary dysfunction causes inherited diseases termed ciliopathies. Several ciliopathy proteins influence developmental signalling and aberrant signalling explains many ciliopathy phenotypes. Ciliary compartmentalisation is essential for function, and the transition zone (TZ), found at the proximal end of the cilium, has recently emerged as a key player in regulating this process. Ciliary compartmentalisation is linked to two protein complexes, the MKS and NPHP complexes, at the TZ that consist largely of ciliopathy proteins, leading to the hypothesis that ciliopathy proteins affect signalling by regulating ciliary content. However, there is no consensus on complex composition, formation, or the contribution of each component. RESULTS: Using bioinformatics, we examined the evolutionary patterns of TZ complex proteins across the extant eukaryotic supergroups, in both ciliated and non-ciliated organisms. We show that TZ complex proteins are restricted to the proteomes of ciliated organisms and identify a core conserved group (TMEM67, CC2D2A, B9D1, B9D2, AHI1 and a single TCTN, plus perhaps MKS1) which are present in >50% of all ciliate/flagellate organisms analysed in each supergroup. The smaller NPHP complex apparently evolved later than the larger MKS complex; this result may explain why RPGRIP1L, which forms the linker between the two complexes, is not one of the core conserved proteins. We also uncovered a striking correlation between lack of TZ proteins in non-seed land plants and loss of TZ-specific ciliary Y-links that link microtubule doublets to the membrane, consistent with the interpretation that these proteins are structural components of Y-links, or regulators of their formation. CONCLUSIONS: This bioinformatic analysis represents the first systematic analysis of the cohort of TZ complex proteins across eukaryotic evolution. Given the near-ubiquity of only 6 proteins across ciliated eukaryotes, we propose that the MKS complex represents a dynamic complex built around these 6 proteins and implicated in Y-link formation and ciliary permeability.We would like to thank Jordan Raff and Teunis J.P. van Dam for helpful discussions. This work was supported by the Medical Research Council (grant number #G1001644 to HRD, support for AB)

    Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion

    Get PDF
    AIMS/HYPOTHESIS: Type 2 diabetes is characterised by progressive beta cell dysfunction, with changes in gene expression playing a crucial role in its development. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and therefore alterations in miRNA levels may be involved in the deterioration of beta cell function. METHODS: Global TaqMan arrays and individual TaqMan assays were used to measure islet miRNA expression in discovery (n = 20) and replication (n = 20) cohorts from individuals with and without type 2 diabetes. The role of specific dysregulated miRNAs in regulating insulin secretion, content and apoptosis was subsequently investigated in primary rat islets and INS-1 cells. Identification of miRNA targets was assessed using luciferase assays and by measuring mRNA levels. RESULTS: In the discovery and replication cohorts miR-187 expression was found to be significantly increased in islets from individuals with type 2 diabetes compared with matched controls. An inverse correlation between miR-187 levels and glucose-stimulated insulin secretion (GSIS) was observed in islets from normoglycaemic donors. This correlation paralleled findings in primary rat islets and INS-1 cells where overexpression of miR-187 markedly decreased GSIS without affecting insulin content or apoptotic index. Finally, the gene encoding homeodomain-interacting protein kinase-3 (HIPK3), a known regulator of insulin secretion, was identified as a direct target of miR-187 and displayed reduced expression in islets from individuals with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Our findings suggest a role for miR-187 in the blunting of insulin secretion, potentially involving regulation of HIPK3, which occurs during the pathogenesis of type 2 diabetes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-013-3089-4) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    The Exocyst Complex in Health and Disease

    Get PDF
    Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease

    Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion

    Get PDF
    Journal ArticleThis article is published with open access at Springerlink.com Electronic supplementary material. The online version of this article (doi:10.1007/s00125-013-3089-4) contains peer-reviewed but unedited supplementary material, which is available to authorised usersAims/hypothesis: Type 2 diabetes is characterised by progressive beta cell dysfunction, with changes in gene expression playing a crucial role in its development. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and therefore alterations in miRNA levels may be involved in the deterioration of beta cell function. Methods: Global TaqMan arrays and individual TaqMan assays were used to measure islet miRNA expression in discovery (n = 20) and replication (n = 20) cohorts from individuals with and without type 2 diabetes. The role of specific dysregulated miRNAs in regulating insulin secretion, content and apoptosis was subsequently investigated in primary rat islets and INS-1 cells. Identification of miRNA targets was assessed using luciferase assays and by measuring mRNA levels. Results: In the discovery and replication cohorts miR-187 expression was found to be significantly increased in islets from individuals with type 2 diabetes compared with matched controls. An inverse correlation between miR-187 levels and glucose-stimulated insulin secretion (GSIS) was observed in islets from normoglycaemic donors. This correlation paralleled findings in primary rat islets and INS-1 cells where overexpression of miR-187 markedly decreased GSIS without affecting insulin content or apoptotic index. Finally, the gene encoding homeodomain-interacting protein kinase-3 (HIPK3), a known regulator of insulin secretion, was identified as a direct target of miR-187 and displayed reduced expression in islets from individuals with type 2 diabetes. Conclusions/interpretation: Our findings suggest a role for miR-187 in the blunting of insulin secretion, potentially involving regulation of HIPK3, which occurs during the pathogenesis of type 2 diabetes. © 2013 The Author(s).This work was supported by the Wellcome Trust (project grant number 089845/Z/09/Z). GAR is the recipient of Royal Society Wolfson Research and Wellcome Trust Senior Investigator (WT098424AIA) Awards, and thanks the Medical Research Council (MRC) for Programme Grant MR/J0003042/1. GdSX and GAR were supported by a project grant from Diabetes UK (BDA 13/0004672) and HDR by MRC grant G1001644

    Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton.

    Get PDF
    addresses: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.notes: PMCID: PMC2909318types: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2009 Company of Biologists.Meckel-Gruber syndrome (MKS) is a severe autosomal recessively inherited disorder caused by mutations in genes that encode components of the primary cilium and basal body. Here we show that two MKS proteins, MKS1 and meckelin, that are required for centrosome migration and ciliogenesis interact with actin-binding isoforms of nesprin-2 (nuclear envelope spectrin repeat protein 2, also known as Syne-2 and NUANCE). Nesprins are important scaffold proteins for maintenance of the actin cytoskeleton, nuclear positioning and nuclear-envelope architecture. However, in ciliated-cell models, meckelin and nesprin-2 isoforms colocalized at filopodia prior to the establishment of cell polarity and ciliogenesis. Loss of nesprin-2 and nesprin-1 shows that both mediate centrosome migration and are then essential for ciliogenesis, but do not otherwise affect apical-basal polarity. Loss of meckelin (by siRNA and in a patient cell-line) caused a dramatic remodelling of the actin cytoskeleton, aberrant localization of nesprin-2 isoforms to actin stress-fibres and activation of RhoA signalling. These findings further highlight the important roles of the nesprins during cellular and developmental processes, particularly in general organelle positioning, and suggest that a mechanistic link between centrosome positioning, cell polarity and the actin cytoskeleton is required for centrosomal migration and is essential for early ciliogenesis

    Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains

    Get PDF
    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel ``meta-polycentric'' functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function

    Functional Characterisation and Drug Target Validation of a Mitotic Kinesin-13 in Trypanosoma brucei

    Get PDF
    Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1) has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target

    The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impairment of cilia and flagella function underlies a growing number of human genetic diseases. Mutations in <it>hydin </it>in <it>hy3 </it>mice cause lethal communicating hydrocephalus with early onset. Hydin was recently identified as an axonemal protein; however, its function is as yet unknown.</p> <p>Results</p> <p>Here we use RNAi in <it>Trypanosoma brucei </it>to address this issue and demonstrate that loss of Hydin causes slow growth and a loss of cell motility. We show that two separate defects in newly-formed flagellar central pair microtubules underlie the loss of cell motility. At early time-points after RNAi induction, the central pair becomes mispositioned, while at later time points the central pair is lost. While the basal body is unaffected, both defects originate at the basal plate, reflecting a role for TbHydin throughout the length of the central pair.</p> <p>Conclusion</p> <p>Our data provide the first evidence of Hydin's role within the trypanosome axoneme, and reveal central pair anomalies and thus impairment of ependymal ciliary motility as the likely cause of the hydrocephalus observed in the <it>hy3 </it>mouse.</p

    SUMOylation of Paraflagellar Rod Protein, PFR1, and Its Stage-Specific Localization in Trypanosoma cruzi

    Get PDF
    BACKGROUND: The flagellate protozoan parasite, Trypanosoma cruzi, is a causative agent of Chagas disease that is transmitted by reduviid bugs to humans. The parasite exists in multiple morphological forms in both vector and host, and cell differentiation in T. cruzi is tightly associated with stage-specific protein synthesis and degradation. However, the specific molecular mechanisms responsible for this coordinated cell differentiation are unclear. METHODOLOGY/PRINCIPAL FINDINGS: The SUMO conjugation system plays an important role in specific protein expression. In T. cruzi, a subset of SUMOlylated protein candidates and the nuclear localization of SUMO have been shown. Here, we examined the biological roles of SUMO in T. cruzi. Site-directed mutagenesis analysis of SUMO consensus motifs within T. cruzi SUMO using a bacterial SUMOylation system revealed that T. cruzi SUMO can polymerize. Indirect fluorescence analysis using T. cruzi SUMO-specific antibody showed the extra-nuclear localization of SUMO on the flagellum of epimastigote and metacyclic and bloodstream trypomastigote stages. In the short-flagellate intracellular amastigote, an extra-nuclear distribution of SUMO is associated with basement of the flagellum and becomes distributed along the flagellum as amastigote transforms into trypomastigote. We examined the flagellar target protein of SUMO and show that a paraflagellar rod protein, PFR1, is SUMOylated. CONCLUSIONS: These findings indicate that SUMOylation is associated with flagellar homeostasis throughout the parasite life cycle, which may play an important role in differentiation of T. cruzi

    Basal Body Positioning Is Controlled by Flagellum Formation in Trypanosoma brucei

    Get PDF
    To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum
    • …
    corecore