106 research outputs found

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Detection and Phylogenetic Analysis of Wolbachia in the Asiatic Rice Leafroller, Cnaphalocrocis medinalis, in Chinese Populations

    Get PDF
    Wolbachia are a group of intracellular inherited endosymbiontic bacteria infecting a wide range of insects. In this study the infection status of Wolbachia (Rickettsiales: Rickettsiaceae) was measured in the Asiatic rice leafroller, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae), from twenty locations in China by sequencing wsp, ftsZ and 16S rDNA genes. The results showed high infection rates of Wolbachia in C. medinalis populations. Wolbachia was detected in all geographically separate populations; the average infection rate was ∼ 62.5%, and the highest rates were 90% in Wenzhou and Yangzhou populations. The Wolbachia detected in different C. medinalis populations were 100% identical to each other when wsp, ftsZ, and 16S rDNA sequences were compared, with all sequences belonging to the Wolbachia B supergroup. Based on wsp, ftsZ and 16S rDNA sequences of Wolbachia, three phylogenetic trees of similar pattern emerged. This analysis indicated the possibility of inter-species and intra-species horizontal transmission of Wolbachia in different arthropods in related geographical regions. The migration route of C. medinalis in mainland China was also discussed since large differentiation had been found between the wsp sequences of Chinese and Thai populations

    Multi-Scale Simulations Provide Supporting Evidence for the Hypothesis of Intramolecular Protein Translocation in GroEL/GroES Complexes

    Get PDF
    The biological function of chaperone complexes is to assist the folding of non-native proteins. The widely studied GroEL chaperonin is a double-barreled complex that can trap non-native proteins in one of its two barrels. The ATP-driven binding of a GroES cap then results in a major structural change of the chamber where the substrate is trapped and initiates a refolding attempt. The two barrels operate anti-synchronously. The central region between the two barrels contains a high concentration of disordered protein chains, the role of which was thus far unclear. In this work we report a combination of atomistic and coarse-grained simulations that probe the structure and dynamics of the equatorial region of the GroEL/GroES chaperonin complex. Surprisingly, our simulations show that the equatorial region provides a translocation channel that will block the passage of folded proteins but allows the passage of secondary units with the diameter of an alpha-helix. We compute the free-energy barrier that has to be overcome during translocation and find that it can easily be crossed under the influence of thermal fluctuations. Hence, strongly non-native proteins can be squeezed like toothpaste from one barrel to the next where they will refold. Proteins that are already fairly close to the native state will not translocate but can refold in the chamber where they were trapped. Several experimental results are compatible with this scenario, and in the case of the experiments of Martin and Hartl, intra chaperonin translocation could explain why under physiological crowding conditions the chaperonin does not release the substrate protein

    Isolation of a Rickettsial Pathogen from a Non-Hematophagous Arthropod

    Get PDF
    Rickettsial diversity is intriguing in that some species are transmissible to vertebrates, while others appear exclusive to invertebrate hosts. Of particular interest is Rickettsia felis, identifiable in both stored product insect pests and hematophagous disease vectors. To understand rickettsial survival tactics in, and probable movement between, both insect systems will explicate the determinants of rickettsial pathogenicity. Towards this objective, a population of Liposcelis bostrychophila, common booklice, was successfully used for rickettsial isolation in ISE6 (tick-derived cells). Rickettsiae were also observed in L. bostrychophila by electron microscopy and in paraffin sections of booklice by immunofluorescence assay using anti-R. felis polyclonal antibody. The isolate, designated R. felis strain LSU-Lb, resembles typical rickettsiae when examined by microscopy. Sequence analysis of portions of the Rickettsia specific 17-kDa antigen gene, citrate synthase (gltA) gene, rickettsial outer membrane protein A (ompA) gene, and the presence of the R. felis plasmid in the cell culture isolate confirmed the isolate as R. felis. Variable nucleotide sequences from the isolate were obtained for R. felis-specific pRF-associated putative tldD/pmbA. Expression of rickettsial outer membrane protein B (OmpB) was verified in R. felis (LSU-Lb) using a monoclonal antibody. Additionally, a quantitative real-time PCR assay was used to identify a significantly greater median rickettsial load in the booklice, compared to cat flea hosts. With the potential to manipulate arthropod host biology and infect vertebrate hosts, the dual nature of R. felis provides an excellent model for the study of rickettsial pathogenesis and transmission. In addition, this study is the first isolation of a rickettsial pathogen from a non-hematophagous arthropod

    Wolbachia Prophage DNA Adenine Methyltransferase Genes in Different Drosophila-Wolbachia Associations

    Get PDF
    Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts. In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for in depth studing of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of modification and/or rescue mechanism of cytoplasmic incompatibility

    Allele Intersection Analysis: A Novel Tool for Multi Locus Sequence Assignment in Multiply Infected Hosts

    Get PDF
    Wolbachia are wide-spread, endogenous α-Proteobacteria of arthropods and filarial nematodes. 15–75% of all insect species are infected with these endosymbionts that alter their host's reproduction to facilitate their spread. In recent years, many insect species infected with multiple Wolbachia strains have been identified. As the endosymbionts are not cultivable outside living cells, strain typing relies on molecular methods. A Multi Locus Sequence Typing (MLST) system was established for standardizing Wolbachia strain identification. However, MLST requires hosts to harbour individual and not multiple strains of supergroups without recombination. This study revisits the applicability of the current MLST protocols and introduces Allele Intersection Analysis (AIA) as a novel approach. AIA utilizes natural variations in infection patterns and allows correct strain assignment of MLST alleles in multiply infected host species without the need of artificial strain segregation. AIA identifies pairs of multiply infected individuals that share Wolbachia and differ in only one strain. In such pairs, the shared MLST sequences can be used to assign alleles to distinct strains. Furthermore, AIA is a powerful tool to detect recombination events. The underlying principle of AIA may easily be adopted for MLST approaches in other uncultivable bacterial genera that occur as multiple strain infections and the concept may find application in metagenomic high-throughput parallel sequencing projects

    Almost There: Transmission Routes of Bacterial Symbionts between Trophic Levels

    Get PDF
    Many intracellular microbial symbionts of arthropods are strictly vertically transmitted and manipulate their host's reproduction in ways that enhance their own transmission. Rare horizontal transmission events are nonetheless necessary for symbiont spread to novel host lineages. Horizontal transmission has been mostly inferred from phylogenetic studies but the mechanisms of spread are still largely a mystery. Here, we investigated transmission of two distantly related bacterial symbionts – Rickettsia and Hamiltonella – from their host, the sweet potato whitefly, Bemisia tabaci, to three species of whitefly parasitoids: Eretmocerus emiratus, Eretmocerus eremicus and Encarsia pergandiella. We also examined the potential for vertical transmission of these whitefly symbionts between parasitoid generations. Using florescence in situ hybridization (FISH) and transmission electron microscopy we found that Rickettsia invades Eretmocerus larvae during development in a Rickettsia-infected host, persists in adults and in females, reaches the ovaries. However, Rickettsia does not appear to penetrate the oocytes, but instead is localized in the follicular epithelial cells only. Consequently, Rickettsia is not vertically transmitted in Eretmocerus wasps, a result supported by diagnostic polymerase chain reaction (PCR). In contrast, Rickettsia proved to be merely transient in the digestive tract of Encarsia and was excreted with the meconia before wasp pupation. Adults of all three parasitoid species frequently acquired Rickettsia via contact with infected whiteflies, most likely by feeding on the host hemolymph (host feeding), but the rate of infection declined sharply within a few days of wasps being removed from infected whiteflies. In contrast with Rickettsia, Hamiltonella did not establish in any of the parasitoids tested, and none of the parasitoids acquired Hamiltonella by host feeding. This study demonstrates potential routes and barriers to horizontal transmission of symbionts across trophic levels. The possible mechanisms that lead to the differences in transmission of species of symbionts among species of hosts are discussed
    corecore