60 research outputs found
Serum antibodies in first-degree relatives of patients with IBD: A marker of disease susceptibility? A follow-up pilot-study after 7 years
Introduction: Various disease-specific serum antibodies were described in patients with inflammatory bowel disease and their yet healthy first-degree relatives. In the latter, serum antibodies are commonly regarded as potential markers of disease susceptibility. The present long-term follow-up study evaluated the fate of antibody-positive first-degree relatives. Patients and Methods: 25 patients with Crohn's disease, 19 patients with ulcerative colitis and 102 first-degree relatives in whom presence of ASCA, pANCA, pancreatic- and goblet-cell antibodies had been assessed were enrolled. The number of incident cases with inflammatory bowel disease was compared between antibody-positive and antibody-negative first-degree relatives 7 years after storage of serum samples. Results: 34 of 102 (33%) first-degree relatives were positive for at least one of the studied serum antibodies. In the group of first-degree relatives, one case of Crohn's disease and one case of ulcerative colitis were diagnosed during the follow-up period. However, both relatives did not display any of the investigated serum antibodies (p = 1). Discussion: The findings of our pilot study argue against a role of serum antibodies as a marker of disease susceptibility in first-degree relatives of patients with inflammatory bowel disease. However, these data have to await confirmation in larger ideally prospective multicenter studies before definite conclusions can be drawn
Serum antibodies in first-degree relatives of patients with IBD: A marker of disease susceptibility? A follow-up pilot-study after 7 years
Introduction: Various disease-specific serum antibodies were described in patients with inflammatory bowel disease and their yet healthy first-degree relatives. In the latter, serum antibodies are commonly regarded as potential markers of disease susceptibility. The present long-term follow-up study evaluated the fate of antibody-positive first-degree relatives. Patients and Methods: 25 patients with Crohn's disease, 19 patients with ulcerative colitis and 102 first-degree relatives in whom presence of ASCA, pANCA, pancreatic- and goblet-cell antibodies had been assessed were enrolled. The number of incident cases with inflammatory bowel disease was compared between antibody-positive and antibody-negative first-degree relatives 7 years after storage of serum samples. Results: 34 of 102 (33%) first-degree relatives were positive for at least one of the studied serum antibodies. In the group of first-degree relatives, one case of Crohn's disease and one case of ulcerative colitis were diagnosed during the follow-up period. However, both relatives did not display any of the investigated serum antibodies (p = 1). Discussion: The findings of our pilot study argue against a role of serum antibodies as a marker of disease susceptibility in first-degree relatives of patients with inflammatory bowel disease. However, these data have to await confirmation in larger ideally prospective multicenter studies before definite conclusions can be drawn
Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes
<p>Abstract</p> <p>Background</p> <p>Prior studies suggest a role for a variant (rs5743836) in the promoter of toll-like receptor 9 (TLR9) in asthma and other inflammatory diseases. We performed detailed genetic association studies of the functional variant rs5743836 with asthma susceptibility and asthma-related phenotypes in three independent cohorts.</p> <p>Methods</p> <p>rs5743836 was genotyped in two family-based cohorts of children with asthma and a case-control study of adult asthmatics. Association analyses were performed using chi square, family-based and population-based testing. A luciferase assay was performed to investigate whether rs5743836 genotype influences TLR9 promoter activity.</p> <p>Results</p> <p>Contrary to prior reports, rs5743836 was not associated with asthma in any of the three cohorts. Marginally significant associations were found with FEV<sub>1 </sub>and FVC (p = 0.003 and p = 0.008, respectively) in one of the family-based cohorts, but these associations were not significant after correcting for multiple comparisons. Higher promoter activity of the CC genotype was demonstrated by luciferase assay, confirming the functional importance of this variant.</p> <p>Conclusion</p> <p>Although rs5743836 confers regulatory effects on TLR9 transcription, this variant does not appear to be an important asthma-susceptibility locus.</p
The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation
In humans, allelic variants in Toll-like receptors (TLRs) associate with several pathologies. However, the underlying cellular and molecular mechanisms of this association remain largely unknown. Analysis of the human TLR9 promoter revealed that the C allele of the rs5743836 polymorphism generates several regulatory sites, including an IL-6-responding element. Here, we show that, in mononuclear cells carrying the TC genotype of rs5743836, IL-6 up-regulates TLR9 expression, leading to exacerbated cellular responses to CpG, including IL-6 production and B-cell proliferation. Our study uncovers a role for the rs5743836 polymorphism in B-cell biology with implications on TLR9-mediated diseases and on the therapeutic usage of TLR9 agonists/antagonists
Th17-Related Genes and Celiac Disease Susceptibility
Th17 cells are known to be involved in several autoimmune or inflammatory diseases. In celiac disease (CD), recent studies suggest an implication of those cells in disease pathogenesis. We aimed at studying the role of genes relevant for the Th17 immune response in CD susceptibility. A total of 101 single nucleotide polymorphisms (SNPs), mainly selected to cover most of the variability present in 16 Th17-related genes (IL23R, RORC, IL6R, IL17A, IL17F, CCR6, IL6, JAK2, TNFSF15, IL23A, IL22, STAT3, TBX21, SOCS3, IL12RB1 and IL17RA), were genotyped in 735 CD patients and 549 ethnically matched healthy controls. Case-control comparisons for each SNP and for the haplotypes resulting from the SNPs studied in each gene were performed using chi-square tests. Gene-gene interactions were also evaluated following different methodological approaches. No significant results emerged after performing the appropriate statistical corrections. Our results seem to discard a relevant role of Th17 cells on CD risk
Tolllike receptor 4 (TLR4) polymorphisms in Tunisian patients with Crohn's disease: genotype-phenotype correlation
<p>Abstract</p> <p>Background</p> <p>The immune responses to bacterial products through the pattern recognition receptor (PRR) play a pivotal role in pathogenesis of Crohn's disease. A recent study described an association between CD and some gene coding for bacterial receptor like NOD2/CARD15 gene and TLR4. In this study, we sought to determine whether TLR4 gene was associated with Crohn's disease (CD) among the Tunisian population and its correlation with clinical manifestation of the disease.</p> <p>Methods</p> <p>90 patients with CD and 80 healthy individuals are genotyped for the <it>Asp299Gly </it>and <it>Thr399Ile </it>polymorphisms by restriction fragment length polymorphism analysis.</p> <p>Results</p> <p>The allele and genotype frequency of the TLR4 polymorphisms did not differ between patients and controls. The genotype-phenotype correlation permitted to show that the <it>Thr399Ile </it>polymorphism was associated with early onset disease.</p> <p>Conclusion</p> <p>this study reported the absence of association between CD and TLR4 gene in the Tunisian population, but this gene could play a role in clinical expression of the disease.</p
Polymorphisms in the Tlr4 and Tlr5 Gene Are Significantly Associated with Inflammatory Bowel Disease in German Shepherd Dogs
Inflammatory bowel disease (IBD) is considered to be the most common cause of vomiting and diarrhoea in dogs, and the German shepherd dog (GSD) is particularly susceptible. The exact aetiology of IBD is unknown, however associations have been identified between specific single-nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) and human IBD. However, to date, no genetic studies have been undertaken in canine IBD. The aim of this study was to investigate whether polymorphisms in canine TLR 2, 4 and 5 genes are associated with IBD in GSDs. Mutational analysis of TLR2, TLR4 and TLR5 was performed in 10 unrelated GSDs with IBD. Four non-synonymous SNPs (T23C, G1039A, A1571T and G1807A) were identified in the TLR4 gene, and three non-synonymous SNPs (G22A, C100T and T1844C) were identified in the TLR5 gene. The non-synonymous SNPs identified in TLR4 and TLR5 were evaluated further in a case-control study using a SNaPSHOT multiplex reaction. Sequencing information from 55 unrelated GSDs with IBD were compared to a control group consisting of 61 unrelated GSDs. The G22A SNP in TLR5 was significantly associated with IBD in GSDs, whereas the remaining two SNPs were found to be significantly protective for IBD. Furthermore, the two SNPs in TLR4 (A1571T and G1807A) were in complete linkage disequilibrium, and were also significantly associated with IBD. The TLR5 risk haplotype (ACC) without the two associated TLR4 SNP alleles was significantly associated with IBD, however the presence of the two TLR4 SNP risk alleles without the TLR5 risk haplotype was not statistically associated with IBD. Our study suggests that the three TLR5 SNPs and two TLR4 SNPs; A1571T and G1807A could play a role in the pathogenesis of IBD in GSDs. Further studies are required to confirm the functional importance of these polymorphisms in the pathogenesis of this disease
Role of Dlg5/lp-dlg, a Membrane-Associated Guanylate Kinase Family Protein, in Epithelial-Mesenchymal Transition in LLc-PK1 Renal Epithelial Cells
Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase adaptor family of proteins, some of which are involved in the regulation of epithelial-to-mesenchymal transition (EMT). Dlg5 has been described as a susceptibility gene for Crohn's disease; however, the physiological function of Dlg5 is unknown. We show here that transforming growth factor-β (TGF-β)-induced EMT suppresses Dlg5 expression in LLc-PK1 cells. Depletion of Dlg5 expression by knockdown promoted the expression of the mesenchymal marker proteins, fibronectin and α-smooth muscle actin, and suppressed the expression of E-cadherin. In addition, activation of JNK and p38, which are stimulated by TGF-β, was enhanced by Dlg5 depletion. Furthermore, inhibition of the TGF-β receptor suppressed the effects of Dlg5 depletion. These observations suggest that Dlg5 is involved in the regulation of TGF-βreceptor-dependent signals and EMT
Inherited liver shunts in dogs elucidate pathways regulating embryonic development and clinical disorders of the portal vein
Congenital disorders of the hepatic portal vasculature are rare in man but occur frequently in certain dog breeds. In dogs, there are two main subtypes: intrahepatic portosystemic shunts, which are considered to stem from defective closure of the embryonic ductus venosus, and extrahepatic shunts, which connect the splanchnic vascular system with the vena cava or vena azygos. Both subtypes result in nearly complete bypass of the liver by the portal blood flow. In both subtypes the development of the smaller branches of the portal vein tree in the liver is impaired and terminal branches delivering portal blood to the liver lobules are often lacking. The clinical signs are due to poor liver growth, development, and function. Patency of the ductus venosus seems to be a digenic trait in Irish wolfhounds, whereas Cairn terriers with extrahepatic portosystemic shunts display a more complex inheritance. The genes involved in these disorders cannot be identified with the sporadic human cases, but in dogs, the genome-wide study of the extrahepatic form is at an advanced stage. The canine disease may lead to the identification of novel genes and pathways cooperating in growth and development of the hepatic portal vein tree. The same pathways likely regulate the development of the vascular system of regenerating livers during liver diseases such as hepatitis and cirrhosis. Therefore, the identification of these molecular pathways may provide a basis for future proregenerative intervention
- …