2,077 research outputs found
Alemtuzumab pre-conditioning with tacrolimus monotherapy in pediatric renal transplantation
We employed antibody pre-conditioning with alemtuzumab and posttransplant immunosuppression with low-dose tacrolimus monotherapy in 26 consecutive pediatric kidney transplant recipients between January 2004 and December 2005. Mean recipient age was 10.7 ± 5.8 years, 7.7% were undergoing retransplantation, and 3.8% were sensitized, with a PRA >20%. Mean donor age was 32.8 ± 9.2 years. Living donors were utilized in 65% of the transplants. Mean cold ischemia time was 27.6 ± 6.4 h. The mean number of HLA mismatches was 3.3 ± 1.3. Mean follow-up was 25 ± 8 months. One and 2 year patient survival was 100% and 96%. One and 2 year graft survival was 96% and 88%. Mean serum creatinine was 1.1 ± 0.6 mg/dL, and calculated creatinine clearance was 82.3 ± 29.4 mL/min/1.73 m 2. The incidence of pre-weaning acute rejection was 11.5%; the incidence of delayed graft function was 7.7%. Eighteen (69%) of the children were tapered to spaced tacrolimus monotherapy, 10.5 ± 2.2 months after transplantation. The incidence of CMV, PTLD and BK virus was 0%; the incidence of posttransplant diabetes was 7.7%. Although more follow-up is clearly needed, antibody pre-conditioning with alemtuzumab and tacrolimus monotherapy may be a safe and effective regimen in pediatric renal transplantation. © 2007 The Authors
Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner
The viability of a possible cosmological scenario is investigated. The
theoretical framework is the constrained next-to-minimal supersymmetric
standard model (cNMSSM), with a gravitino playing the role of the lightest
supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest
supersymmetric particle (NLSP). All the necessary constraints from colliders
and cosmology have been taken into account. For gravitino we have considered
the two usual production mechanisms, namely out-of equillibrium decay from the
NLSP, and scattering processes from the thermal bath. The maximum allowed
reheating temperature after inflation, as well as the maximum allowed gravitino
mass are determined.Comment: 20 pages, 5 figure
SUSY dark matter(s)
We review here the status of different dark matter candidates in the context
of supersymmetric models, in particular the neutralino as a realization of the
WIMP-mechanism and the gravitino. We give a summary of the recent bounds in
direct and indirect detection and also of the LHC searches relevant for the
dark matter question. We discuss also the implications of the Higgs discovery
for the supersymmetric dark matter models and give the prospects for the future
years.Comment: 16 pages, 3 figure
Light Higgsino in Heavy Gravitino Scenario with Successful Electroweak Symmetry Breaking
We consider, in the context of the minimal supersymmetric standard model, the
case where the gravitino weighs 10^6 GeV or more, which is preferred by various
cosmological difficulties associated with unstable gravitinos. Despite the
large Higgs mixing parameter B together with the little hierarchy to other soft
supersymmetry breaking masses, a light higgsino with an electroweak scale mass
leads to successful electroweak symmetry breaking, at the price of fine-tuning
the higgsino mixing mu parameter. Furthermore the light higgsinos produced at
the decays of gravitinos can constitute the dark matter of the universe. The
heavy squark mass spectrum of O(10^4) GeV can increase the Higgs boson mass to
about 125 GeV or higher.Comment: 13 pages, 3 figures; v2: version to appear in JHE
General Gauge and Anomaly Mediated Supersymmetry Breaking in Grand Unified Theories with Vector-Like Particles
In Grand Unified Theories (GUTs) from orbifold and various string
constructions the generic vector-like particles do not need to form complete
SU(5) or SO(10) representations. To realize them concretely, we present
orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be
broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R
gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like
particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass
can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry
Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated
Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general
gaugino mass relations and their indices, which are valid from the GUT scale to
the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X
U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the
deflected AMSB, we also define the new indices for the gaugino mass relations,
and calculate them as well. Using these gaugino mass relations and their
indices, we may probe the messenger fields at intermediate scale in the GMSB
and deflected AMSB, determine the supersymmetry breaking mediation mechanisms,
and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.Comment: RevTex4, 45 pages, 15 tables, version to appear in JHE
Probing CP Violation with and without Momentum Reconstruction at the LHC
We study the potential to observe CP-violating effects in SUSY cascade decay
chains at the LHC. We consider squark and gluino production followed by
subsequent decays into neutralinos with a three-body leptonic decay in the
final step. Asymmetries composed by triple products of momenta of the final
state particles are sensitive to CP-violating effects. Due to large boosts
these asymmetries can be difficult to observe at a hadron collider. We show
that using all available kinematic information one can reconstruct the decay
chains on an event-by-event basis even in the case of 3-body decays, neutrinos
and LSPs in the final state. We also discuss the most important experimental
effects like major backgrounds and momentum smearing due to finite detector
resolution. We show that with 300 fb of collected data, CP violation may
be discovered at the LHC for a wide range of the phase of the bino mass
parameter .Comment: Version accepted for publication in JHEP. Clarifications added on the
assumptions used for plots. New references adde
Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM
We examine the implications of singlet-doublet Higgs mixing on the properties
of a Standard Model (SM)-like Higgs boson within the Peccei-Quinn invariant
extension of the NMSSM (PQ-NMSSM). The SM singlet added to the Higgs sector
connects the PQ and visible sectors through a PQ-invariant non-renormalizable
K\"ahler potential term, making the model free from the tadpole and domain-wall
problems. For the case that the lightest Higgs boson is dominated by the
singlet scalar, the Higgs mixing increases the mass of a SM-like Higgs boson
while reducing its signal rate at collider experiments compared to the SM case.
The Higgs mixing is important also in the region of parameter space where the
NMSSM contribution to the Higgs mass is small, but its size is limited by the
experimental constraints on the singlet-like Higgs boson and on the lightest
neutralino constituted mainly by the singlino whose Majorana mass term is
forbidden by the PQ symmetry. Nonetheless the Higgs mixing can increase the
SM-like Higgs boson mass by a few GeV or more even when the Higgs signal rate
is close to the SM prediction, and thus may be crucial for achieving a 125 GeV
Higgs mass, as hinted by the recent ATLAS and CMS data. Such an effect can
reduce the role of stop mixing.Comment: 26 pages, 3 figures; published in JHE
Hitting sbottom in natural SUSY
We compare the experimental prospects of direct stop and sbottom pair
production searches at the LHC. Such searches for stops are of great interest
as they directly probe for states that are motivated by the SUSY solution to
the hierarchy problem of the Higgs mass parameter - leading to a "Natural" SUSY
spectrum. Noting that sbottom searches are less experimentally challenging and
scale up in reach directly with the improvement on b-tagging algorithms, we
discuss the interplay of small TeV scale custodial symmetry violation with
sbottom direct pair production searches as a path to obtaining strong sub-TeV
constraints on stops in a natural SUSY scenario. We argue that if a weak scale
natural SUSY spectrum does not exist within the reach of LHC, then hopes for
such a spectrum for large regions of parameter space should sbottom out.
Conversely, the same arguments make clear that a discovery of such a spectrum
is likely to proceed in a sbottom up manner.Comment: 18 pages, 8 figures,v2 refs added, JHEP versio
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
CP violation in sbottom decays
We study CP asymmetries in two-body decays of bottom squarks into charginos
and tops. These asymmetries probe the SUSY CP phases of the sbottom and the
chargino sector in the Minimal Supersymmetric Standard Model. We identify the
MSSM parameter space where the CP asymmetries are sizeable, and analyze the
feasibility of their observation at the LHC. As a result, potentially
detectable CP asymmetries in sbottom decays are found, which motivates further
detailed experimental studies for probing the SUSY CP phases.Comment: 29 pages, 7 figure
- …
