449 research outputs found

    Multi-frequency study of Local Group Supernova Remnants The curious case of the Large Magellanic Cloud SNR J0528-6714

    Full text link
    Aims. Recent ATCA, XMM-Newton and MCELS observations of the Magellanic Clouds (MCs) cover a number of new and known SNRs which are poorly studied, such as SNR J0528-6714 . This particular SNR exhibits luminous radio-continuum emission, but is one of the unusual and rare cases without detectable optical and very faint X-ray emission (initially detected by ROSAT and listed as object [HP99] 498). We used new multi-frequency radio-continuum surveys and new optical observations at H{\alpha}, [S ii] and [O iii] wavelengths, in combination with XMM-Newton X-ray data, to investigate the SNR properties and to search for a physical explanation for the unusual appearance of this SNR. Methods. We analysed the X-ray and Radio-Continuum spectra and present multi-wavelength morphological studies of this SNR. Results. We present the results of new moderate resolution ATCA observations of SNR J0528-6714. We found that this object is a typical older SNR with a radio spectral index of {\alpha}=-0.36 \pm 0.09 and a diameter of D=52.4 \pm 1.0 pc. Regions of moderate and somewhat irregular polarisation were detected which are also indicative of an older SNR. Using a non-equilibrium ionisation collisional plasma model to describe the X-ray spectrum, we find temperatures kT of 0.26 keV for the remnant. The low temperature, low surface brightness, and large extent of the remnant all indicate a relatively advanced age. The near circular morphology indicates a Type Ia event. Conclusions. Our study revealed one of the most unusual cases of SNRs in the Local Group of galaxies - a luminous radio SNR without optical counterpart and, at the same time, very faint X-ray emission. While it is not unusual to not detect an SNR in the optical, the combination of faint X-ray and no optical detection makes this SNR very unique.Comment: 6 pages, 5 figures, Accepted for publication in A&

    AGN behind the SMC selected from radio and X-ray surveys

    Full text link
    The XMM-Newton survey of the Small Magellanic Cloud (SMC) revealed 3053 X-ray sources with the majority expected to be active galactic nuclei (AGN) behind the SMC. However, the high stellar density in this field often does not allow assigning unique optical counterparts and hinders source classification. On the other hand, the association of X-ray point sources with radio emission can be used to select background AGN with high confidence, and to constrain other object classes like pulsar wind nebula. To classify X-ray and radio sources, we use clear correlations of X-ray sources found in the XMM-Newton survey with radio-continuum sources detected with ATCA and MOST. Deep radio-continuum images were searched for correlations with X-ray sources of the XMM-Newton SMC-survey point-source catalogue as well as galaxy clusters seen with extended X-ray emission. Eighty eight discrete radio sources were found in common with the X-ray point-source catalogue in addition to six correlations with extended X-ray sources. One source is identified as a Galactic star and eight as galaxies. Eight radio sources likely originate in AGN that are associated with clusters of galaxies seen in X-rays. One source is a PWN candidate. We obtain 43 new candidates for background sources located behind the SMC. A total of 24 X-ray sources show jet-like radio structures.Comment: 9 pages, 6 figures, accepted for publication in A&

    Optical Spectra of Radio Planetary Nebulae in the Small Magellanic Cloud

    Get PDF
    We present preliminary results from spectral observations of four candidate radio sources co-identified with known planetary nebulae (PNe) in the Small Magellanic Cloud (SMC). These were made using the Radcliffe 1.9-meter telescope in Sutherland, South Africa. These radio PNe were originally found in Australia Telescope Compact Array (ATCA) surveys of the SMC at 1.42 and 2.37 GHz, and were further confirmed by new high resolution ATCA images at 6 and 3 cm (4"/2"). Optical PNe and radio candidates are within 2" and may represent a subpopulation of selected radio bright objects. Nebular ionized masses of these objects may be 2.6 MSol or greater, supporting the existence of PNe progenitor central stars with masses up to 8 MSol.Comment: 6 pages 8 figures, to be published in Serbian Astronomical Journa

    The first observed stellar occultations by the irregular satellite Phoebe (Saturn IX) and improved rotational period

    Get PDF
    peer reviewedWe report six stellar occultations by Phoebe (Saturn IX), an irregular satellite of Saturn, obtained between mid-2017 and mid-2019. The 2017 July 6 event was the first stellar occultation by an irregular satellite ever observed. The occultation chords were compared to a 3D shape model of the satellite obtained from Cassini observations. The rotation period available in the literature led to a sub-observer point at the moment of the observed occultations where the chords could not fit the 3D model. A procedure was developed to identify the correct sub-observer longitude. It allowed us to obtain the rotation period with improved precision compared to the currently known value from literature. We show that the difference between the observed and the predicted sub-observer longitude suggests two possible solutions for the rotation period. By comparing these values with recently observed rotational light curves and single- chord stellar occultations, we can identify the best solution for Phoebe's rotational period as 9.27365 ± 0.00002 h. From the stellar occultations, we also obtained six geocentric astrometric positions in the ICRS as realized by the Gaia DR2 with uncertainties at the 1-mas level

    Highly absorbed X-ray binaries in the Small Magellanic Cloud

    Full text link
    Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, which hampers their detection at the softest X-ray energies. We have undertaken a search for highly-absorbed X-ray sources in the Small Magellanic Cloud (SMC) with a systematic analysis of 62 XMM-Newton SMC observations. We obtained a sample of 30 sources showing evidence for an equivalent hydrogen column density larger than 3x10^23 cm^-2. Five of these sources are clearly identified as HMXRBs: four were already known (including three X-ray pulsars) and one, XMM J005605.8-720012, reported here for the first time. For the latter, we present optical spectroscopy confirming the association with a Be star in the SMC. The other sources in our sample have optical counterparts fainter than magnitude ~16 in the V band, and many of them have possible NIR counterparts consistent with highly reddened early type stars in the SMC. While their number is broadly consistent with the expected population of background highly-absorbed active galactic nuclei, a few of them could be HMXRBs in which an early type companion is severely reddened by local material.Comment: 10 pages, 4 figures, 4 tables. Accepted for publication by Astronomy & Astrophysic

    Multi-frequency study of supernova remnants in the Large Magellanic Cloud. Confirmation of the supernova remnant status of DEM L205

    Full text link
    We present new X-ray and radio data of the LMC SNR candidate DEM L205, obtained by XMM-Newton and ATCA, along with archival optical and infrared observations. We use data at various wavelengths to study this object and its complex neighbourhood, in particular in the context of the star formation activity, past and present, around the source. We analyse the X-ray spectrum to derive some remnant's properties, such as age and explosion energy. Supernova remnant features are detected at all observed wavelengths: soft and extended X-ray emission is observed, arising from a thermal plasma with a temperature kT between 0.2 keV and 0.3 keV. Optical line emission is characterised by an enhanced [SII]/Halpha ratio and a shell-like morphology, correlating with the X-ray emission. The source is not or only tentatively detected at near-infrared wavelengths (< 10 microns), but there is a detection of arc-like emission at mid and far-infrared wavelengths (24 and 70 micron) that can be unambiguously associated with the remnant. We suggest that thermal emission from dust heated by stellar radiation and shock waves is the main contributor to the infrared emission. Finally, an extended and faint non-thermal radio emission correlates with the remnant at other wavelengths and we find a radio spectral index between -0.7 and -0.9, within the range for SNRs. The size of the remnant is ~79x64 pc and we estimate a dynamical age of about 35000 years. We definitely confirm DEM L205 as a new SNR. This object ranks amongst the largest remnants known in the LMC. The numerous massive stars and the recent outburst in star formation around the source strongly suggest that a core-collapse supernova is the progenitor of this remnant. (abridged)Comment: 11 pages, 6 figures, accepted for publication in A&

    Detecção e caracterização molecular de Leishmania em cães do Nordeste do Brasil.

    Get PDF
    O objetivo do presente estudo foi determinar a soroprevalência atual da Leishmaniose Visceral Canina (LVC) em cães domiciliados, os fatores associados à soropositividade, espécies circulantes de Leishmania e análise espacial em seis municípios das mesorregiões do Sertão e São Francisco, localizados no estado de Pernambuco, Brasil
    corecore