60 research outputs found

    Synchronous N-S and E-W extension at the Tibet-to-Himalaya transition in NW Bhutan

    Get PDF
    Despite ~50 Myr of continuous continent-continent collision, contractional structures in the Himalayan-Tibetan orogen are today limited to the northern and southern margins of the system, while extension dominates much of the interior. On the Tibetan Plateau, Cenozoic E-W extension has been accommodated by strike-slip faults and extensional grabens, while N-S extension at the Tibet-to-Himalaya transition has been accommodated by the South Tibetan fault system (STFS). The genetic relationship between N-S and E-W extension is disputed, although age constraints indicate temporal overlap of at least 7 Myr. In NW Bhutan the two intersect where the STFS basal detachment is cut by the Yadong cross structure (YCS), an extensional half graben that provides a rare opportunity to constrain relative timings. We report U-Pb zircon dates from four STFS footwall leucogranites consistent with episodic magmatism during the middle-late Miocene and in situ U(-Th)-Pb monazite and xenotime dates from three metasedimentary rocks ranging from late Oligocene to middle Miocene. We suggest that amphibolite facies footwall metamorphism was ongoing at the time the basal STFS detachment initiated as a ductile structure in the middle-late Miocene. Late-stage granitic intrusions may reflect footwall melting during extensional exhumation along the STFS, but post-metamorphic and post-intrusion fabrics suggest that most displacement occurred after emplacement of the youngest granites. Some of the oldest YCS-related fabrics are found in a deformed 14 Ma leucogranite, implying middle Miocene ductile deformation. This observation, along with evidence for subsequent brittle YCS deformation, suggests that N-S and E-W extensional structures in the area had protracted and overlapping deformation histories

    Random matrix ensembles of time correlation matrices to analyze visual lifelogs

    Get PDF
    Visual lifelogging is the process of automatically recording images and other sensor data for the purpose of aiding memory recall. Such lifelogs are usually created using wearable cameras. Given the vast amount of images that are maintained in a visual lifelog, it is a significant challenge for users to deconstruct a sizeable collection of images into meaningful events. In this paper, random matrix theory (RMT) is applied to a cross-correlation matrix C, constructed using SenseCam lifelog data streams to identify such events. The analysis reveals a number of eigenvalues that deviate from the spectrum suggested by RMT. The components of the deviating eigenvectors are found to correspond to “distinct significant events” in the visual lifelogs. Finally, the cross-correlation matrix C is cleaned by separating the noisy part from the non-noisy part. Overall, the RMT technique is shown to be useful to detect major events in SenseCam images

    The Mathematical Universe

    Full text link
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and Godel incompleteness. I hypothesize that only computable and decidable (in Godel's sense) structures exist, which alleviates the cosmological measure problem and help explain why our physical laws appear so simple. I also comment on the intimate relation between mathematical structures, computations, simulations and physical systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs; more details at http://space.mit.edu/home/tegmark/toe.htm

    Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group

    Get PDF
    Abstract: The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group’s short-term, intermediate, and long-term goals

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Nasal residence of insulin containing lyophilised nasal insert formulations, using gamma scintigraphy

    No full text
    Bioadhesive dosage forms are a potential method for overcoming rapid mucociliary transport in the nose. A lyophilised nasal insert formulation previously investigated in sheep demonstrated prolonged absorption of nicotine hydrogen tartrate suggestive of extended nasal residence, and increased bioavailability. The current study was performed to quantify nasal residence of the formulations using gamma scintigraphy, and to investigate the absorption of a larger molecule, namely insulin. A four-way crossover study was conducted in six healthy male volunteers, comparing a conventional nasal spray solution with three lyophilised nasal insert formulations (1–3% hydroxypropylmethylcellulose (HPMC)). The conventional nasal spray deposited in the posterior nasal cavity in only one instance, with a rapid clearance half-life of 9.2 min. The nasal insert formulations did not enhance nasal absorption of insulin, however an extended nasal residence time of 4–5 h was observed for the 2% HPMC formulation. The 1% HPMC insert initially showed good spreading behaviour; however, clearance was faster than for the 2% formulation. The 3% HPMC nasal insert showed no spreading, and was usually cleared intact from the nasal cavity within 90 min. In conclusion, the 2% HPMC lyophilised insert formulation achieved extended nasal residence, demonstrating an optimum combination of rapid adhesion without over hydration
    • 

    corecore