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Abstract. Visual lifelogging is the process of automatically recording images
and other sensor data. Such lifelogs are usually created using wearable cameras.
Given the vast amount of images that are maintained in a visual lifelog, it is a sig-
nificant challenge to deconstruct a sizeable collection of images into meaningful
events for users. In this paper, random matrix theory (RMT) is applied to a cross-
correlation matrix C, constructed using SenseCam lifelog data streams to identify
such events. The analysis reveals a number of eigenvalues that deviate from the
spectrum suggested by RMT. The components of the deviating eigenvectors are
found to correspond to “distinct significant events” in the visual lifelogs. Finally,
the cross-correlation matrix C is cleaned by separating the noisy part from the
non-noisy part. Overall, the RMT technique is shown to be useful to detect major
events in SenseCam images.

Keywords: Random Matrix Theory, Cross-correlation Matrix, Eigenvalues and
Eigenvectors, SenseCam

1 Introduction

Lifelogging is the process of automatically recording aspects of one’s life in digital
form. This includes visual lifelogging using wearable cameras such as the SenseCam.
The SenseCam [1], developed by Microsoft Research in Cambridge, UK, is a small
wearable device that is worn via a lanyard suspended around the neck. The SenseCam
incorporates a digital camera and multiple feeds, including sensors to detect changes in
light levels, an accelerometer to detect motion, a thermometer to detect ambient temper-
ature, and a passive infrared sensor to detect the presence of a person. The device takes
pictures at VGA resolution, (480x640 pixels), and stores these as compressed JPEG
files on internal flash memory. All sensor data and captured SenseCam images can be
downloaded to a standard PC via a USB cable. SenseCam can collect a large amount of
data even over a short period of time, with a picture typically taken every 30 seconds,
an average of 2,000 images captured in any given day, together with associated sensor
readings (logged every second).

Experience shows that the SenseCam can be an effective memory-aid device [2], as it
helps users to improve recollection of an experience. However, given the large size of
the dataset that is created by the SenseCam, refreshing one’s memory just by browsing
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the vast corpus is a tedious, if not unacceptable task. Hence, techniques are required for
all users to manage, organise and analyse these large image collections, e.g., by auto-
matically highlighting key episodes and, ideally, classifying them in order of importance
to the life logger. Doherty et al. [3] address this challenge by identifying distinct events
within a full day, (which typically consists of 2,000 lifelog images) e.g. breakfast, work-
ing on PC, meeting, etc.. However, their approach still contains a significant percentage
of routine events. Li et al. [4] tackle the challenge by treating SenseCam images as
time series. They show that these time series exhibit a strong long-range correlation,
concluding that the time series is not a random walk, but is cyclical, with continuous
low levels of background information picked up constantly by the device. Further, they
adopt a cross-correlation matrix to highlight key episodes, thus identifying boundaries
between different daily events.

However, due to the finite length of time series available to estimate cross correla-
tions, the matrix contains much which corresponds to “random” contributions [5–8].
As a consequence, their technique results in the identification of a high percentage of
noise or routine events. This phenomenon can also be observed in other domains such
as the analysis of financial data, wireless communications and many other fields. A
well-proven technique to handle this issue is the application of random matrix theory
(RMT).

In this paper, we investigate whether RMT can be used to distinguish routine events
from important events. We argue that such routine events can then be removed from
the cross-correlation matrix by applying RMT. Our goal is to segment the content of
the cross-correlation matrix into two: (a) the part of the correlation matrix that con-
forms to the properties of random correlation matrices (“noise”) and (b) the part of
the correlation matrix that deviates from random (i.e. has “information” on important
events).

In detail, we address this challenge as follows. First, we analyze the distribution of the
correlation coefficients of the cross-correlation matrix C, which reveals an asymmet-
ric, long positive tail with a high peak, implying that some background information is
picked up constantly by the device. Next we apply RMT methods to analyse the cross-
correlation matrix C and show that a number (≈ 20%) of the eigenvalues of C agree
with RMT predictions, suggesting that C may have a “random band” matrix structure,
i.e., “noise” element. Further, using the inverse participation ratio concept, we analyze
the eigenvectors of the cross-correlation matrix and find that both edges of the eigen-
value spectrum of C (smallest and largest eigenvalues) deviate from RMT prediction.
We argue that these deviant components represent significant or unusual events in the
data stream. Finally, the cross-correlation matrix is cleaned by separating the noisy part
from the non-noisy part of C in order to remove the user’s routine events.

This paper is organized as follows: In Section 2, we discuss related work in the fields
of lifelogging and random matrix theory. Section 3 provides a brief overview of the
data that are used within this work to study the research hypothesis. In Section 4, we
discuss the use of random matrix theory in the extraction of information from a cor-
relation matrix of SenseCam image time series. In Section 5, we discuss the statistics



of cross-correlation coefficients and compare the eigenvalue distribution of the cross-
correlation matrix with RMT results. In addition, we detail the analysis of the contents
of eigenvectors that deviated from RMT. Finally, Section 6 provides conclusions on the
work and anticipates future directions.

2 Related Work

This work builds on two research streams: (1) The creation and analysis of visual lifel-
ogs and (2) the application of random matrix theory. In the remainder of this section,
we briefly introduce both aspects.

2.1 Visual Lifelogging

As stated, visual lifelogging is the process of automatically capturing images and stor-
ing them in a personal repository. Although technologies for visual lifelogging has ex-
isted for several years, the use of such devices so far has been explored mainly by early
adopters and researchers, in terms of studying its role as memory aid [2]. However, a
recent study [9] suggests that lifelogging is an emerging trend with wider applications
and an increasing member of devices will be available in the near future. A prominent
example is Google Glass [10], which has received considerable media attention, since
its first introduction to the public.

The majority of past research in the visual lifelogging domain has focused on issues
of hardware miniaturisation [11] and also storage of images [12]. However, these chal-
lenges have been comparatively well addressed [1], resulting in improved wearability
of devices and inexpensive storage [2]. The challenge is now that of retrieving relevant
information from the vast quantities of captured data [2, 13–15].

A previous method, used to review images captured by the SenseCam is SenseCam
Image View [1]. However, it can take two minutes or more to browse through a day’s
worth of SenseCam images, which means to 15 minutes to review all the images from
one week. Therefore, we propose creation of one page ‘visual summaries’ of a day
containing different images representing activities and events experienced by the user.
Other research in this area has seen segmentation of the lifelog of SenseCam images into
approximately 20 distinct events in a wearer’s day, which translates to over 7,000 events
per year [3]. Nevertheless, this large collection of personal information still contains a
significant percentage of routine events. The objective is thus to determine which events
are the most important or unusual for the lifelogger. In this paper, we address this issue
by applying random matrix theory, described in the next subsection.

2.2 Random Matrix Theory

Random matrix theory (RMT) was first introduced by Wigner, Dyson, Mehta, and oth-
ers [5–8] who aimed to study the energy levels of complex atomic nuclei [16]. Devi-



ations from the universal predictions of RMT can be used to identify system specific,
non-random properties of the system under consideration, providing clues about the
underlying interactions [6–8].

Its successful application to atomic physics has stimulated its use in many other fields,
including number theory and combinatorics, wireless communications [17], and in mul-
tivariate statistical analysis and principal components analysis [18, 19], as well as for fi-
nancial and other large dimensional data analysis [16, 20] . Applications of RMT meth-
ods to analysis of the properties of the cross-correlation matrix C show that a large
proportion of eigenvalues of C agree with RMT predictions, indicating a considerable
degree of randomness in measured cross correlations. Deviations from RMT predictions
are, however also observed.

In the context of visual lifelogging, it has been shown that SenseCam image time series
reflect strong long-range correlation [4] which suggests continuous low levels of back-
ground information picked up constantly by the device. In this paper, we investigate
the use of RMT applied to a cross-correlation matrix C to detect details on SenseCam
lifelog data streams.

3 Data

For this study, we analyzed 2101 lifelog images, recorded using a SenseCam over the
period of one day. The wearer of the camera, i.e., the lifelogger, experienced an average
day: commuting to the office in the morning, sitting and working in the office at a desk,
talking with colleagues and sharing lunch in the cafeteria, as well as commuting back
home in the evening and so on. Fig. 1 shows some examples of SenseCam images that
have been recorded on that day. Given the size of the test corpus and its content, we
can argue that it is a typical visual lifelogging collection depicting a typical day of the
subject’s life.

Fig. 1. Example of SenseCam Images



As discussed before, a user will experience approximately 20 events per a day, but when
exploring one’s lifelog, reviewing routine or “boring” events has only limited interest,
depending on the device purpose [21]. Efforts to determine automatically which events
are most important or unusual (e.g., talking with a colleague as opposed to working in
front of a computer), is an open research challenge. In order to distinguish routine or
“boring” events from important events, we apply RMT methods to the cross-correlation
matrix of the dataset, where such noise filtering has proved successful in many fields
[17–19, 16, 20]. In the next section, successful the method is outlined.

4 Methods

4.1 Random Matrix Theory

In order to optimize the calculation process and reduce the amount of memory required
for our calculations, we first adopt an averaging method to decrease image size from
480×640 pixels to 60×80 pixels. Given pixels Gi(t), i = {1, .., N}, of a collection of
images, we normalized Gi(t) in order to standardize the different pixels for the images
as follows:

gi(t) =
Gi(t)−Gi(t)

σ(i)
(1)

Where σ(i) is the standard deviation of Gi for image numbers i = {1, .., N} and Gi is
the pixels’ average of Gi over total pixel values T .

Then, the equal-time cross-correlation matrix [22] may be expressed in terms of gi(t)

Cij ≡
〈
gi(t)gj(t)

〉
(2)

The elements of Cij are limited to the domain -1≤Cij≤1,where Cij=±1 defines per-
fect positive/negative correlation and Cij=0 corresponds to no correlation. In matrix
notation, the correlation matrix can be expressed as

C =
1

T
GGτ (3)

where τ is the transpose of a matrix, G is an N × T matrix with elements git, N is the
number of images and T is the pixel size of an image.

The spectral properties of C may be compared to those of a “random” Wishart correla-
tion matrix [16],

R =
1

T
AAτ (4)

Where A is an N×T matrix with each element randomly distributed, with zero mean
and unit variance. In particular, the limiting property for the sample size N →∞ and



sample length T →∞, providing thatQ = T/N ≥ 1 is fixed, has been analysed to give
the distribution of eigenvalues λ of the random correlation matrix R, given by:

Prm(λ) =
Q

2πσ2

√
(λ+ − λ)(λ− λ−)

λ
(5)

for λ−≤λi≤λ+, where λ− and λ+ are the minimum and maximum eigenvalues of R,
respectively, given by

λ± = σ2(1 +
1

Q
± 2

√
1

Q
) (6)

Then, σ2 is the variance of the elements of G and λ± are the bounds of the theoretical
eigenvalue distribution. Eigenvalues that fall outside this region are said to deviate from
the expected values of the Random Matrix. Hence, by comparing the empirical distribu-
tion of the eigenvalues of the correlation matrix to the distribution for a random matrix,
as given in Eq. (5), we can identify those key eigenvalues which can be used to identify
the specific information relating to the system. Eigenvector analysis enables identifica-
tion of the specific information present, in terms of contributory components.

4.2 Eigenvector Analysis

Differences between the eigenvalues P (λ) of C and RMT eigenvalues, Prm(λ) should
also be displayed, therefore, in the statistics of the corresponding eigenvector compo-
nents. In order to interpret this deviation of the eigenvectors, we note that the largest
eigenvalue is an order of magnitude larger than the others, which constrains the re-
maining N − 1 eigenvalues, since the trace of C, Tr[C] sums to N . Hence, in order
to analyse the contents of the remaining eigenvectors, we first remove the effect of the
largest eigenvalue. To do this we use the linear regression [16]

Gi(t) = αi + βiG
large(t) + εi(t) (7)

Where Glarge =
∑N

1 ulargei Gi(t) and N is the number of images in our sample. Here
ulargei corresponds to the components of the largest eigenvector. The cross-correlation
matrix C, is then recalculated, using the residuals εi(t). If we quantify the ‘remainder
variance’, (i.e., of the part not explained by the largest eigenvalue) as σ2 = 1−λlarge/n,
this value can be used to recalculate our values of λ±.

As suggested in [16], we also aim to assess whether random effects are less marked fur-
ther away from RMT upper boundary λ+. To do this we use the Inverse Participation
Ratio (IPR). The IPR allows quantification of the number of components that partici-
pate significantly in each eigenvector and tells us more about the level and nature of the

deviation from RMT. The IPR of the eigenvector uk is given by Ik ≡
N∑
l=1

[ukl ]
4 and al-

lows us to compute the inverse of the number of eigenvector components that contribute
significantly to each eigenvector.



5 Results

5.1 Statistics of Correlation Coefficients

In order to quantify correlations, we first analyse the distribution P (Cij) of the elements
{Cij : i = j} of the cross-correlation matrix C calculated by Eq. (3) and distribution
P (Rij) of the elements {Rij : i = j} of the random matrix calculated by Eq. (4).
Fig. 2 shows that P (Rij) is consistent with a Gaussian with zero mean, in contrast to
P (Cij). We note that P (Cij) is asymmetric, with a long positive tail and has a high
peak, implying that positively correlated behaviour is more prevalent than negatively
correlated positively. This is consistent with our previous research [4]. We argue that
the tail represents significant or unusual events in the data stream. In addition, we see
that the P (Cij) falls within the Gaussian curve for the control, suggesting the possibility
that observed similarities with R in the cross-correlation matrix C may be an effect of
randomness.

5.2 Eigenvalue Analysis

As stated above, our aim is to distinguish between information (major events) and noise
in the cross-correlation matrix C, so we compare the eigenvalue distribution P (λ) of C
with Prm(λ) for N = 2101 images, each containing T = 4800 pixels, Thus, Q = T/N
= 2.28, and we obtain λ− = 0.11 and λ+ = 2.76 from Eq. (6). We compute the eigen-
values λi of C, where λi are rank ordered (λi+1>λi). Fig. 3 compares the probabil-
ity distribution P (λ) with Prm(λ). We note the presence of a well-defined “bulk” of
eigenvalues which fall within the bounds [λ−, λ+] for Prm(λ). We also note deviations
for (≈ 80%) largest and smallest eigenvalues. Thus suggests that the cross-correlation
matrix has captured most major events from the data streams, but still contains some
percentage of noise (≈ 20%).

5.3 Eigenvector Analysis

The deviations of P (λ) from the RMT result Prm(λ) suggests that these deviations
should also be observed in the statistics of the corresponding eigenvector components
[23]. Accordingly, in this section, we analyse the distribution of eigenvector compo-
nents. The distribution of the components {ukl ; l = 1, ..., N} of eigenvector Uk of a
random correlation matrix R should conform to a Gaussian distribution with zero mean
and unit variance. First, we compare the distribution of eigenvector components of C
with a Gaussian distribution. We analyse P (u) for C computed for the total of 2101
images. We choose one typical eigenvalue λk from the bulk (λ−≤λk≤λ+) defined by
Prm(λ) from Eq. (5). It shows that P (u) for a typical Uk from the bulk shows nearly to-
tal agreement with the RMT result Prm(u). Similar analysis on the other eigenvectors,
belonging to eigenvalues within the bulk, yields consistent results, (in agreement with
those of the previous sections) to random matrix predictions. We test the agreement of
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Fig. 2. Correlation Coefficients Distribution for Correlation Matrix C for SenseCam data (black)
and Random Matrix R (red).
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Fig. 3. Eigenvalue Distribution for the Correlation Matrix C for SenseCam data, Full spectral
distribution (a) Partial spectral distribution (b)

the distribution P (U) with Prm(u) by calculating the kurtosis, which for a Gaussian has
the value 3. We find that the largest eigenvector (≈ 4.07) significant deviates from the
Gaussian value. The second and third Eigenvectors (≈ 3.7, 3.8) are also larger than the



Gaussian value. The Eigenvector from the bulk is however consistent with the Gaussian
value 3. These findings suggest that the largest eigenvalue (corresponding to the largest
eigenvector) present information from the image that reflects the largest change in the
SenseCam recording.
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Fig. 4. Comparison of Eigenvector Components, largest Eigenvector (a), second largest Eigen-
vector (b), third largest Eigenvector (c) and Eigenvector from the bulk (d)

In order to remove the effects of the largest eigenvalue we use the techniques described
in Section 3.2. We remove the contribution of Glarge(t) to each time series Gi(t), and
constructC from the residuals εi(t) of Eq. (7). Fig. 5 shows that the distribution P (Cij)
thus obtained has a smaller average value <Cij>, showing that a degree of cross cor-
relations contained in C can be attributed to the influence of the largest eigenvalue and
its corresponding eigenvector.

Having studied the largest eigenvalue and noting that if deviates significantly from RMT
results, we conclude that it reflects the largest change in the SenseCam data streams. So
next focus on the remaining eigenvalues to see whether these relate also to key sources
or major events and what information these contribute additionally to the images. The
Inverse Participation Ratio (IPR) quantities the reciprocal of the number of eigenvector
components that contribute significantly. Fig. 6 (a) shows Ik for the case of the control
of Eq. (4). The average value of Ik is <I>≈0.0014≈1/N with a very narrow spread,
indicating that the vectors are extended [24] - i.e., almost all components elements (of
the vector) contribute. Fluctuations around this average value are confined to a narrow
range. Fig. 6 (b) show Ik for the cross-correlation matrix constructed from the 2101
SenseCam images. The edges of the eigenvalue spectrum of C show significant de-
viations of Ik from <I>, indicating that there are major events contributing to these
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eigenvectors. In addition, we also find that there are a number of small eigenvalue de-
viations from the control case, which suggests that the vectors are localized [24] - i.e.
only a few images contribute to them.
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Examination, of the eigenvalue and eigenvector content, indicates that the percentage
of (≈ 20%) noise for that period is described by the wearer working in front of the
laptop for a long time without performing any other activities. The deviating eigenval-
ues from the RMT upper bound are described by the wearer morning from in front of
the laptop and preparing to go home, with every image capturing different moments
of this event. For example, considerable light is captured at the moment of standing
up, different colours appear when she turns around, etc. Although all these images are
visually very diverse, all have been captured at the same space, i.e., in the office. The
deviating eigenvalues from the RMT lower bound involve several different activities,
events such as commuting from home to the work place, the wearer talking with her
colleague, the wearer sharing lunch with her colleague etc. Only a few images depict
the same environment, but these appear on few images only. We argue that this confirms
our observation that the IPR shows that the smallest eigenvalue deviations are localized,
when only a few images contribute to them.

6 Conclusions

To summarise, we have illustrated that RMT, even with rather limited data, (2101 lifelog
images depicting a typical day for a lifelogger) can be applied to extract the information
(major events) and noise from a cross-correlation matrix. Significant deviations from
RMT predictions are observed. In analysing these deviations find that (a) the largest
eigenvalue and its corresponding eigenvector present information from the image that
reflects the largest change in the SenseCam recording, and (b) the smallest eigenvalues,
and their corresponding eigenvectors, represent short duration major events from the
SenseCam recording. The ‘cleaning technique’ (of separating the noisy part from the
non-noisy part) is demonstrated to be useful. Overall, RMT provides a powerful tool to
analyse cross correlations across whole data streams.

Future work includes evaluation large of datasets and assessment of the eigenvalues
of C within the RMT bound for universal properties of random matrices, in order to
confirm initial results and further explore the detailed features of the SenseCam im-
ages.
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