50 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Use of stochastic simulation to evaluate the reduction in methane emissions and improvement in reproductive efficiency from routine hormonal interventions in dairy herds

    Get PDF
    This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least ÂŁ50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set

    Improving pulse crops as a source of protein, starch and micronutrients

    Get PDF
    Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement

    Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo.

    Get PDF
    Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3-/- 33 mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3-/- 35 mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key ‘hub’ proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist

    Replacement of meat and dairy by plant-derived foods:estimated effects on land use, iron and SFA intakes in young Dutch adult females

    Get PDF
    <p>Objective: Reduction in the current high levels of meat and dairy consumption may contribute to environmental as well as human health. Since meat is a major source of Fe, effects on Fe intake need to be evaluated, especially in groups vulnerable to negative Fe status. In the present study we evaluated the effects of replacing meat and dairy foods with plant-based products on environmental sustainability (land requirement) and health (SFA and Fe intakes) in women.</p><p>Design: Data on land requirements were derived from existing calculation methods. Food composition data were derived from the Dutch Food Composition Table 2006. Data were linked to the food consumption of young Dutch women. Land requirements and nutrient intakes were evaluated at baseline and in two scenarios in which 30% (Scenario_30 %) or 100% (Scenario_100 %) of the dairy and meat consumption was randomly replaced by the same amount of plant-based dairy-and meat-replacing foods.</p><p>Setting: The Netherlands.</p><p>Subjects: Three hundred and ninety-eight young Dutch females.</p><p>Results: Replacement of meat and dairy by plant-based foods benefited the environment by decreasing land use. The intake of SFA decreased considerably compared with the baseline situation. On average, total Fe intake increased by 2.5 mg/d, although most of the Fe intake was from a less bioavailable source.</p><p>Conclusions: Replacement of meat and dairy foods by plant-based foods reduced land use for consumption and SFA intake of young Dutch females and did not compromise total Fe intake.</p>

    Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration

    No full text
    ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration and severe lysosomal storage disease despite unchanged lysosomal pH in cultured neurons. Rescuing their bone phenotype by transgenic expression of ClC-7 in osteoclasts moderately increased their lifespan and revealed a further progression of the central nervous system pathology. Histological analysis demonstrated an accumulation of electron-dense material in neurons, autofluorescent structures, microglial activation and astrogliosis. Like in human neuronal ceroid lipofuscinosis, there was a strong accumulation of subunit c of the mitochondrial ATP synthase and increased amounts of lysosomal enzymes. Such alterations were minor or absent in ClC-3 knockout mice, despite a massive neurodegeneration. Osteopetrotic oc/oc mice, lacking a functional H(+)-ATPase a3 subunit, showed no comparable retinal or neuronal degeneration. There are important medical implications as defects in the H(+)-ATPase and ClC-7 can underlie human osteopetrosis
    corecore