1,368 research outputs found

    The State of the Art of Medical Imaging Technology: from Creation to Archive and Back

    Get PDF
    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations

    The ground state of Sr3Ru2O7 revisited; Fermi liquid close to a ferromagnetic instability

    Full text link
    We show that single-crystalline Sr3Ru2O7 grown by a floating-zone technique is an isotropic paramagnet and a quasi-two dimensional metal as spin-triplet superconducting Sr2RuO4 is. The ground state is Fermi liquid with very low residual resistivity (3 micro ohm cm for in-plane currents) and a nearly ferromagnetic metal with the largest Wilson ratio Rw>10 among paramagnets so far. This contrasts with the ferromagnetic order at Tc=104 K reported on single crystals grown by a flux method [Cao et al., Phys. Rev. B 55, R672 (1997)]. We have also found a dramatic changeover from paramagnetism to ferromagnetism under applied pressure. This suggests the existence of a substantial ferromagnetic instability on the verge of a quantum phase transition in the Fermi liquid state.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B : Rapid co

    Metamagnetism and critical fluctuations in high quality single crystals of the bilayer ruthenate Sr3Ru2O7

    Full text link
    We report the results of low temperature transport, specific heat and magnetisation measurements on high quality single crystals of the bilayer perovskite Sr3Ru2O7, which is a close relative of the unconventional superconductor Sr2RuO4. Metamagnetism is observed, and transport and thermodynamic evidence for associated critical fluctuations is presented. These relatively unusual fluctuations might be pictured as variations in the Fermi surface topography itself. No equivalent behaviour has been observed in the metallic state of Sr2RuO4.Comment: 4 pages, 4 figures, Revtex 3.

    A cell cycle-coordinated Polymerase II transcription compartment encompasses gene expression before global genome activation

    Get PDF
    © 2019, The Author(s). Most metazoan embryos commence development with rapid, transcriptionally silent cell divisions, with genome activation delayed until the mid-blastula transition (MBT). However, a set of genes escapes global repression and gets activated before MBT. Here we describe the formation and the spatio-temporal dynamics of a pair of distinct transcription compartments, which encompasses the earliest gene expression in zebrafish. 4D imaging of pri-miR430 and zinc-finger-gene activities by a novel, native transcription imaging approach reveals transcriptional sharing of nuclear compartments, which are regulated by homologous chromosome organisation. These compartments carry the majority of nascent-RNAs and active Polymerase II, are chromatin-depleted and represent the main sites of detectable transcription before MBT. Transcription occurs during the S-phase of increasingly permissive cleavage cycles. It is proposed, that the transcription compartment is part of the regulatory architecture of embryonic nuclei and offers a transcriptionally competent environment to facilitate early escape from repression before global genome activation

    Ectopic primary type A thymoma located in two thoracic vertebras: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thymus arises in the ventral portion of the third and fourth pharyngeal pouch. It descends into the anterior mediastinum at 6<sup>th </sup>week of gestation. Any errors occurring during this process can cause dissemination of aberrant nodules that are responsible for most atypical thymomas.</p> <p>Case Presentation</p> <p>The authors report a unusual case of type-A thymoma located in D10 and D11 vertebral bodies.</p> <p>The histology showed a uniform growth of short, spindle shaped, mitotically inactive cells. A few small, normal lymphocytes were seen scattered or in small groups. The immunohistochemical investigation for neuroectodermal, neuroendocrine, vascular and muscular markers were negative. It also confirmed the presence of CD3+, CD5+ T lymphocytes and the absence of immature T-lymphocyte markers.</p> <p>Conclusions</p> <p>The case described shows a thymic hystogenesis for spindle cell tumours. To our knowledge no other cases of vertebral thymomas have been described in international literature.</p

    MRI of the lung (3/3)-current applications and future perspectives

    Get PDF
    BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations

    From nodal liquid to nodal Mottness in a frustrated Hubbard model

    Full text link
    We investigate the physics of frustrated 3-leg Hubbard ladders in the band limit, when hopping across the ladder's rungs (t_{\perp}) is of the same order as hopping along them (t) much greater than the onsite Coulomb repulsion (U). We show that this model exhibits a striking electron-hole asymmetry close to half-filling: the hole-doped system at low temperatures develops a Resonating Valence Bond (RVB)-like d-wave gap (pseudogap close to (π\pi,0)) coinciding with gapless nodal excitations (nodal liquid); in contrast, the electron-doped system is seen to develop a Mott gap at the nodes, whilst retaining a metallic character of its majority Fermi surface. At lower temperatures in the electron-doped case, d-wave superconducting correlations -- here, coexisting with gapped nodal excitations -- are already seen to arise. Upon further doping the hole-doped case, the RVB-like state yields to d-wave superconductivity. Such physics is reminiscent of that exhibited by the high temperature cuprate superconductors--notably electron-hole asymmetry as noted by Angle Resolved PhotoEmission Spectroscopy (ARPES) and the resistivity exponents observed. This toy model also reinforces the importance of a more thorough experimental investigation of the known 3-leg ladder cuprate systems, and may have some bearing on low dimensional organic superconductors.Comment: 26 pages, 16 figure

    Performance of a fast fiber based UV/Vis multiwavelength detector for the analytical ultracentrifuge

    Get PDF
    The optical setup and the performance of a prototype UV/Vis multiwavelength analytical ultracentrifuge (MWL-AUC) is described and compared to the commercially available Optima XL-A from Beckman Coulter. Slight modifications have been made to the optical path of the MWL-AUC. With respect to wavelength accuracy and radial resolution, the new MWL-AUC is found to be comparable to the existing XL-A. Absorbance accuracy is dependent on the light intensity available at the detection wavelength as well as the intrinsic noise of the data. Measurements from single flashes of light are more noisy for the MWL-AUC, potentially due to the absence of flash-to-flash normalization in the current design. However, the possibility of both wavelength and scan averaging can compensate for this and still give much faster scan rates than the XL-A. Some further improvements of the existing design are suggested based on these findings

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32
    corecore