We investigate the physics of frustrated 3-leg Hubbard ladders in the band
limit, when hopping across the ladder's rungs (t⊥) is of the same
order as hopping along them (t) much greater than the onsite Coulomb repulsion
(U). We show that this model exhibits a striking electron-hole asymmetry close
to half-filling: the hole-doped system at low temperatures develops a
Resonating Valence Bond (RVB)-like d-wave gap (pseudogap close to (π,0))
coinciding with gapless nodal excitations (nodal liquid); in contrast, the
electron-doped system is seen to develop a Mott gap at the nodes, whilst
retaining a metallic character of its majority Fermi surface. At lower
temperatures in the electron-doped case, d-wave superconducting correlations --
here, coexisting with gapped nodal excitations -- are already seen to arise.
Upon further doping the hole-doped case, the RVB-like state yields to d-wave
superconductivity. Such physics is reminiscent of that exhibited by the high
temperature cuprate superconductors--notably electron-hole asymmetry as noted
by Angle Resolved PhotoEmission Spectroscopy (ARPES) and the resistivity
exponents observed. This toy model also reinforces the importance of a more
thorough experimental investigation of the known 3-leg ladder cuprate systems,
and may have some bearing on low dimensional organic superconductors.Comment: 26 pages, 16 figure