23 research outputs found

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Linear programming analysis of the R-parity violation within EDM-constraints

    Full text link

    Basic concepts of laser drilling

    No full text
    The state of the technology of s pulse laser applications is dominated by single pulse drilling, percussion drilling and even trepanning used for high speed drilling with melt expulsion. However, short ps pulses have to be addressed anyway, since there are technical aspects in addition to achieve high speeds in drilling, namely, structuring and tapering while maintaining the mechanical integrity of operation. As an example, to avoid delamination of thermal barrier coatings while structuring the inlet of cooling holes in turbine manufacturing as well as to avoid cracking at the drilled wall forces the scientist needs to take into consideration the mechanisms of short pulse ablation at least in the case of ps pulses. The variety of intriguing physical phenomena span from recast formation well known from the action of s-pulses, via formation of cracks typical for ns- to ps-pulse duration, towards homogeneous expansion, phase explosion and spallation characteristic for fs-pulses. The numerous phenomena are related to physical models describing propagation and absorption of radiation, ionization, evaporation and non-linear transport of mass, momentum and energy. Technical achievements like lasers emitting 100 ps or shorter pulses and related experimental observations introduce the future need for simulations to cope also with kinetic properties of beam-matter interaction. Temperatures approaching the critical state during ablation with pulse durations in the range from some ps to a few hundred ns raise the question whether Equation of State phenomena are contributing to the overall appearance in drilling. In particular, beam aberrations instead of a free running or multiply reflected beam pattern are encountered in modelling independent of pulse duration. Beam aberrations are not only introduced by the action of beam guiding and forming optics, but also by spatially distributed feedback from the dynamical shape of the ablated material surface. Effects changing the phase distribution of the incident laser radiation are incorporated in the models for the first time: for example, some temporal and spatial changes of the density in the gaseous phase. In drilling, the dynamical phenomena governing the shape of the drilled hole are identified experimentally and can be related to the processing parameters theoretically
    corecore