9,395 research outputs found

    Plasma electrons above Saturn's main rings: CAPS observations

    Get PDF
    We present observations of thermal ( similar to 0.6 - 100eV) electrons observed near Saturn's main rings during Cassini's Saturn Orbit Insertion (SOI) on 1 July 2004. We find that the intensity of electrons is broadly anticorrelated with the ring optical depth at the magnetic footprint of the field line joining the spacecraft to the rings. We see enhancements corresponding to the Cassini division and Encke gap. We suggest that some of the electrons are generated by photoemission from ring particle surfaces on the illuminated side of the rings, the far side from the spacecraft. Structure in the energy spectrum over the Cassini division and A-ring may be related to photoelectron emission followed by acceleration, or, more likely, due to photoelectron production in the ring atmosphere or ionosphere

    Comparison of the Effectiveness of Transcutaneous Electrical Nerve Stimulation and Interferential Therapy on the Upper Trapezius in Myofascial Pain Syndrome: A Randomized Controlled Study.

    Get PDF
    OBJECTIVE: The aim of this study was to compare the effectiveness of transcutaneous electrical nerve stimulation and interferential therapy (IFT) both in combination with hot pack, myofascial release, active range of motion exercise, and a home exercise program on myofascial pain syndrome patients with upper trapezius myofascial trigger point. DESIGN: A total of 105 patients with an upper trapezius myofascial trigger point were recruited to this single-blind randomized controlled trial. Following random allocation of patients to three groups, three therapeutic regimens-control-standard care (hot pack, active range of motion exercises, myofascial release, and a home exercise program with postural advice), transcutaneous electrical nerve stimulation-standard care and IFT-standard care-were administered eight times during 4 wks at regular intervals. Pain intensity and cervical range of motions (cervical extension, lateral flexion to the contralateral side, and rotation to the ipsilateral side) were measured at baseline, immediately after the first treatment, before the eighth treatment, and 1 wk after the eighth treatment. RESULTS: Immediate and short-term improvements were marked in the transcutaneous electrical nerve stimulation group (n = 35) compared with the IFT group (n = 35) and the control group (n = 35) with respect to pain intensity and cervical range of motions (P < 0.05). The IFT group showed significant improvement on these outcome measurements than the control group did (P < 0.05). CONCLUSION: Transcutaneous electrical nerve stimulation with standard care facilitates recovery better than IFT does in the same combination

    Topological descriptors for 3D surface analysis

    Full text link
    We investigate topological descriptors for 3D surface analysis, i.e. the classification of surfaces according to their geometric fine structure. On a dataset of high-resolution 3D surface reconstructions we compute persistence diagrams for a 2D cubical filtration. In the next step we investigate different topological descriptors and measure their ability to discriminate structurally different 3D surface patches. We evaluate their sensitivity to different parameters and compare the performance of the resulting topological descriptors to alternative (non-topological) descriptors. We present a comprehensive evaluation that shows that topological descriptors are (i) robust, (ii) yield state-of-the-art performance for the task of 3D surface analysis and (iii) improve classification performance when combined with non-topological descriptors.Comment: 12 pages, 3 figures, CTIC 201

    Controls on the formation of lunar multiring basins

    Get PDF
    Multiring basins dominate the crustal structure, tectonics, and stratigraphy of the Moon. Understanding how these basins form is crucial for understanding the evolution of ancient planetary crusts. To understand how preimpact thermal structure and crustal thickness affect the formation of multiring basins, we simulate the formation of lunar basins and their rings under a range of target and impactor conditions. We find that ring locations, spacing, and offsets are sensitive to lunar thermal gradient (strength of the lithosphere), temperature of the deep lunar mantle (strength of the asthenosphere), and preimpact crustal thickness. We also explore the effect of impactor size on the formation of basin rings and reproduce the observed transition from peak‐ring basins to multiring basins and reproduced many observed aspects of ring spacing and location. Our results are in broad agreement with the ring tectonic theory for the formation of basin rings and also suggest that ring tectonic theory applies to the rim scarp of smaller peak‐ring basins

    Antibodies to Seasonal Coronaviruses Rarely Cross-React with SARS-CoV-2: Findings from an African Birth Cohort

    Get PDF
    Antibodies to seasonal human-coronaviruses (sHCoV) may cross-protect against SARS-CoV-2. We investigated antibody responses in biobanked serum obtained before the pandemic from infants with polymerase chain reaction-confirmed sHCoV. Among 141 samples with antibodies to sHCoV, 4 (2.8%) were positive for SARS-CoV-2-S1 and 8 (5.7%) for SARS-CoV-2-S2. Antibodies to sHCoV rarely cross-react with SARS-CoV-2 antigens and are unlikely to account for mild pediatric illness

    Test-Retest Reliability of Diffusion Tensor Imaging in Huntington's Disease.

    Get PDF
    Diffusion tensor imaging (DTI) has shown microstructural abnormalities in patients with Huntington's Disease (HD) and work is underway to characterise how these abnormalities change with disease progression. Using methods that will be applied in longitudinal research, we sought to establish the reliability of DTI in early HD patients and controls. Test-retest reliability, quantified using the intraclass correlation coefficient (ICC), was assessed using region-of-interest (ROI)-based white matter atlas and voxelwise approaches on repeat scan data from 22 participants (10 early HD, 12 controls). T1 data was used to generate further ROIs for analysis in a reduced sample of 18 participants. The results suggest that fractional anisotropy (FA) and other diffusivity metrics are generally highly reliable, with ICCs indicating considerably lower within-subject compared to between-subject variability in both HD patients and controls. Where ICC was low, particularly for the diffusivity measures in the caudate and putamen, this was partly influenced by outliers. The analysis suggests that the specific DTI methods used here are appropriate for cross-sectional research in HD, and give confidence that they can also be applied longitudinally, although this requires further investigation. An important caveat for DTI studies is that test-retest reliability may not be evenly distributed throughout the brain whereby highly anisotropic white matter regions tended to show lower relative within-subject variability than other white or grey matter regions

    Abiotic and biotic processes that drive carboxylation and decarboxylation reactions

    Get PDF
    © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020. Carboxylation and decarboxylation are two fundamental classes of reactions that impact the cycling of carbon in and on Earth's crust. These reactions play important roles in both long-term (primarily abiotic) and short-term (primarily biotic) carbon cycling. Long-term cycling is important in the subsurface and at subduction zones where organic carbon is decomposed and outgassed or recycled back to the mantle. Short-term reactions are driven by biology and have the ability to rapidly convert CO2 to biomass and vice versa. For instance, carboxylation is a critical reaction in primary production and metabolic pathways like photosynthesis in which sunlight provides energy to drive carbon fixation, whereas decarboxylation is a critical reaction in metabolic pathways like respiration and the tricarboxylic acid cycle. Early life and prebiotic chemistry on Earth likely relied heavily upon the abiotic synthesis of carboxylic acids. Over time, life has diversified (de)carboxylation reactions and incorporated them into many facets of cellular metabolism. Here we present a broad overview of the importance of carboxylation and decarboxylation reactions from both abiotic and biotic perspectives to highlight the importance of these reactions and compounds to planetary evolution

    PD1-Expressing T Cell Subsets Modify the Rejection Risk in Renal Transplant Patients

    Get PDF
    We tested whether multi-parameter immune phenotyping before or after renal ­transplantation can predict the risk of rejection episodes. Blood samples collected before and weekly for 3 months after transplantation were analyzed by multi-parameter flow cytometry to define 52 T cell and 13 innate lymphocyte subsets in each sample, producing more than 11,000 data points that defined the immune status of the 28 patients included in this study. Principle component analysis suggested that the patients with histologically confirmed rejection episodes segregated from those without rejection. Protein death 1 (PD-1)-expressing subpopulations of regulatory and conventional T cells had the greatest influence on the principal component segregation. We constructed a statistical tool to predict rejection using a support vector machine algorithm. The algorithm correctly identified 7 out of 9 patients with rejection, and 14 out of 17 patients without rejection. The immune profile before transplantation was most accurate in determining the risk of rejection, while changes of immune parameters after transplantation were less accurate in discriminating rejection from non-rejection. The data indicate that pretransplant immune subset analysis has the potential to identify patients at risk of developing rejection episodes, and suggests that the proportion of PD1-expressing T cell subsets may be a key indicator of rejection risk

    Hypoxia and Hypoglycemia synergistically regulate mRNA stability

    Get PDF
    Ischemic events, common in many diseases, result from decreased blood flow and impaired delivery of oxygen and glucose to tissues of the body. While much is known about the cellular transcriptional response to ischemia, much less is known about the posttranscriptional response to oxygen and glucose deprivation. The goal of this project was to investigate one such posttranscriptional response, the regulation of mRNA stability. To that end, we have identified several novel ischemia-related mRNAs that are synergistically stabilized by oxygen and glucose deprivation including VEGF, MYC, MDM2, and CYR61. This increase in mRNA half-life requires the synergistic effects of both low oxygen (1%) as well as low glucose ( 1 g/L) conditions. Oxygen or glucose deprivation alone fails to initiate the response, as exposure to either high glucose (4 g/L) or normoxic conditions inhibits the response. Furthermore, in response to hypoxia/hypoglycemia, the identified mRNAs are released from the RNA binding protein KHSRP which likely contributes to their stabilization
    corecore