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We tested whether multi-parameter immune phenotyping before or after renal 
 transplantation can predict the risk of rejection episodes. Blood samples collected 
before and weekly for 3 months after transplantation were analyzed by multi-parameter 
flow cytometry to define 52 T cell and 13 innate lymphocyte subsets in each sample, 
producing more than 11,000 data points that defined the immune status of the 28 
patients included in this study. Principle component analysis suggested that the patients 
with histologically confirmed rejection episodes segregated from those without rejection. 
Protein death 1 (PD-1)-expressing subpopulations of regulatory and conventional T cells 
had the greatest influence on the principal component segregation. We constructed 
a statistical tool to predict rejection using a support vector machine algorithm. The 
algorithm correctly identified 7 out of 9 patients with rejection, and 14 out of 17 patients 
without rejection. The immune profile before transplantation was most accurate in deter-
mining the risk of rejection, while changes of immune parameters after transplantation 
were less accurate in discriminating rejection from non-rejection. The data indicate that 
pretransplant immune subset analysis has the potential to identify patients at risk of 
developing rejection episodes, and suggests that the proportion of PD1-expressing 
T cell subsets may be a key indicator of rejection risk.

Keywords: transplantation, rejection, T cells, protein death 1, risk factor

inTrODUcTiOn

Transplantation remains a life saving treatment for patients with kidney failure. Due to improvement 
in organ preservation, advances in surgical technologies, and the use of potent immune suppressive 
treatment regimens, the incidence of acute rejection has dramatically decreased in the recent past. 
However, despite potent immune suppression, approximately 20% of patients still develop acute 
rejection episodes (1). Such episodes predispose to chronic antibody-mediated rejection, tubule-
interstitial fibrosis, and atrophy, resulting in irreversible damage and failure of the transplanted kid-
ney. A registry study of 63,045 renal transplant patients showed that acute rejection episodes were the 
single most important predictor of chronic allograft nephropathy, increasing the risk of graft failure 
by 5.2-fold compared to patients without episodes of acute rejection (2). The loss or damage of a renal 
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transplant secondary to rejection has substantial consequences 
for patients in terms of increased all cause mortality. Acute rejec-
tion episodes result in an increased burden of immunosuppres-
sion contributing to the high rate of infectious and cancer-related 
deaths in the transplant population. Furthermore, graft loss has 
very substantial financial repercussions, as the annual cost of 
providing dialysis is approximately six times that of supporting 
a stable transplant.

Because of the importance of avoiding rejection and the 
consequences of unnecessary over-immunosuppression there is 
an ongoing search for biomarkers, which can identify the risk of 
rejection. Preexisting antibodies to donor HLA are an established 
risk factor for acute rejection (3). Soluble CD30, a member of the 
TNF receptor superfamily, which is expressed on T cells and shed 
into blood, has received considerable attention, but the predic-
tive power of this marker is still not clear (4). More recently, a 
transcriptomic analysis has identified a panel of 17 genes whose 
expression can identify rejection episodes without the need for 
biopsy, and can predict rejection episodes up to 3 months before 
rejection can be observed histologically (5). The screening for 
expression of a set of five genes has been similarly used to identify 
patients with episodes of acute rejection (6). We were particularly 
interested in exploring whether pre-transplantation immune-
profiling might provide a tool to predict those patients at risk 
of rejection, which would inform patient management and allow 
clinicians to adjust the dosing parameters of immunosuppressive 
medication accordingly.

Hence, we have performed a multi-parameter flow cytom-
etry analysis of adaptive and innate lymphocyte subsets in the 
peripheral blood of renal transplant patients before and in the 
first 12  weeks after transplantation. Using statistical machine 
learning algorithms to analyze this complex data set, we find that 
the pretransplant immune-phenotype predicts the risk of acute 
rejection episodes, and that the proportion of PD1-expressing 
regulatory and conventional T cells is a key component of the 
predictive signature. These results suggest a strategy for develop-
ing personalized immune suppressive regimes according to the 
predicted rejection risk assessed prior to transplantation.

MaTerials anD MeThODs

Patients
The Immune Monitoring Study was conducted at the Royal Free 
Hospital, London, between May 2011 and October 2014. The 
study protocol was approved by the National Research Ethics 
Committee. All patients (n  =  28) had given written informed 
consent to participate in the study, and participants were of diverse 
age and ethnicity. Clinical details and patient demographics are 
shown in Table  1. Blood samples were collected from patients 
pretransplant and posttransplant. For live donor organ recipients, 
pretransplant samples were taken before immunosuppression 
was started, and on the day of transplant. For cadaveric donor 
organ recipients, pretransplant samples were taken before immu-
nosuppression on the day of transplant. After transplant, weekly 
samples were taken until week 12 posttransplant for all patients. 
All samples were taken before starting immunosuppression.

Patients received the following immunosuppressive medi-
cations: 20 mg Basiliximab monoclonal antibody (anti-CD25) 
therapy on the day of transplant and on day 4 after transplant. 
Five hundred milligram intravenous methylprednisolone on 
the day of transplant followed by 40 mg intravenous methyl-
prednisolone for 3  days after transplant, then 20  mg of oral 
prednisolone for 7 days, followed by 7 days of 5 mg oral pred-
nisolone. Tacrolimus was given with dose adjusted according 
to plasma levels. 1  g of Mycophenolate Mofetil for 1  month, 
750 mg for a further 2 months, reduced to 500 g by 3 months 
posttransplant. Live donor recipients received both Tacrolimus 
and Mycophenolate Mofetil from ~2 weeks before transplant, 
while cadaveric donor recipients received these from the day of 
transplant. Both groups of patients continue with these medica-
tions indefinitely.

rejection
In cases of unexplained increased serum creatinine levels, 
patients underwent kidney biopsy, and rejection of the kidney 
allograft was confirmed by histological analysis. Rejection was 
either cell-mediated (characterized by infiltration of lymphocytes 
and inflammatory cells into the organ) or antibody-mediated 
(characterized by C4d deposition in the organ and circulating 
donor-specific antibodies). Rejection was treated with steroids 
and/or modification of maintenance immunosuppression.

Blood samples
Peripheral blood mononuclear cells (PBMCs) were separated 
from whole blood by means of density gradient centrifugation, 
and were stored at −180°C in vapor-phase nitrogen in the UCL-
RFH Biobank. Samples were analyzed for flow cytometry no 
more than 3 years after storage.

Flow cytometry
Multi-parametric flow cytometry was used for immunopheno-
typing. PBMC (1 × 106) were stained with a T-cell panel, an innate 
lymphoid panel or with an isotype control panel. Before antibody 
labeling, cells were incubated with purified human IgG (Sigma) to 
reduce non-specific binding. Cells were stained with mAbs against 
CD3-PE Cy7 (clone SK7), CD4-BD Horizon v500 (clone RPA-
T4), CD8-BD Horizon v450 (clone RPA-T8), CD45R0-PECF594 
(clone UCHL1), CD62L-APC (clone DREG-56), CD25-APC Cy7 
(clone M-A251), CD127-FITC (clone HIL-7R-M21), CD279-PE 
(clone EH12.2H7) (Biolegend), HLA-DR-PerCPCy5.5 (clone 
LN3) (eBioscience), CD16-APC H7 (clone 3G8), CD56-APC 
(clone NCAM 16.2), iNKT-PE (6B11), Vδ2-FITC (clone B6), 
IgG1k-APC Cy7 (clone MOPC-21), IgG1k-APC (clone MOPC-
21) (Biolegend), IgG1k-FITC (clone MOPC-21) (Biolegend), 
IgG1k-PE (clone MOPC-21) (Biolegend), and IgG2b-PerCPCy5.5 
(clone N/S) (eBioscience). Antibodies were from BD Biosciences 
unless stated otherwise.

Flow cytometric analysis
Flow cytometric analysis was carried out using a BD 
LSRFortessa™ cytometer with BD FACSDiva™ software v.6.0.1 
(BD Biosciences). The data were analyzed using FlowJo v7.6.5 
software (Treestar Inc.). Gates for CD25+, CD127+, PD-1+, and 
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TaBle 1 | Further clinical details and demographic of patients included in this study.

no. Donor age ethnicity cMV 
status

hla   
mis-match

Original disease Dialysis or not sensitization Post-tx 
cMV 
viremia

rejection Other information

1 Live 33 White D+ R− 111 Dialysis Donor specific Abs: low 
level DQ2

Yes Yes, cellular, 6 months

2 Cadaveric 51 White D+ R+ 121 ADPKD Dialysis Not sensitized Yes, D7 Yes, cellular, W1–2

3 Live 49 White D− R− 112 Familial 
Hyperuricaemic 
nephropathy

Predialysis Not sensitized No Yes, cellular, W9

4 Cadaveric 72 Black African D+ R+ 121 Small kidneys Dialysis Not sensitized Yes, W4–6 Yes, cellular, W2

5 Cadaveric 49 White D− R+ 110 MPGN Dialysis Not sensitized No Yes, cellular, W2 and W18

6 Live 63 White D+ R+ 000 Small kidneys Dialysis Not sensitized No Yes, cellular, 12 months

7 Cadaveric 25 Black African D+ R+ 111 Reduced nephron 
mass and 
hypertension

Dialysis Not sensitized No Yes, cellular, 2 years ABOi, baseline 
postimmunosuppression

8 Live 52 White D+ R+ 122 ADPKD Predialysis Sensitized B8, B16,  
B35, A33

No Yes, cellular, 2 months

No DSA

9 Cadaveric 40 White D+ R+ 022 Proliferative 
glomerulonephritis

Dialysis Not sensitized Yes, low Yes, cellular, W2

10 Live 46 White and 
Black Car.

D+ R− 121 AA amyloid Predialysis Not sensitized No Yes, Ab-mediated, W1–3 HCV+

11 Live 50 Black African D+ R+ 011 Type-2 diabetes Dialysis Not sensitized Yes Yes, cellular, W1

12 Live 39 White D+ R− 011 ADPKD Predialysis DSA low level DR1 Yes No

13 Live 33 White D+ R+ 111 Small kidneys Predialysis Not sensitized No No HBV+

14 Cadaveric 57 White D+ R+ 211 Small kidneys Dialysis Not sensitized Yes, W7–9 No

15 Live 33 Black African D+ R+ 111 Small kidneys Dialysis Sensitized cw5, cw7, B8. 
No DSA

No No

16 Live 65 Black D− R+ 011 Ischemic 
nephropathy

Dialysis Sensitized B82, B81, B55, 
B54, B42. No DSA

Yes No

17 Live 26 White D− R− 111 HSP Predialysis Not sensitized No No

18 Live 46 Asian D+ R+ 222 IgA nephropathy Predialysis Not sensitized Yes, W10–12 No

19 Live 31 Asian D− R− 110 Small kidneys Predialysis Sensitized A34 No No

No DSA

20 Cadaveric 53 Asian Indian D+ R+ 111 Renovascular 
disease

Dialysis Not sensitized No No

(Continued)
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HLA-DR+ CD4+ and CD8+ T cell populations were set using the 
isotype control stained samples for each patient to define the 
negative population.

Principal component analysis
Principal component analysis (PCA) is an exploratory technique 
that is used to visualize high-dimensional data by projecting 
the data into a new smaller set of dimensions called principal 
components (PC), which contain most of the information within 
the data set. The first dimension of the new data is made up of a 
linear combination of all the measured dimensions of the data, 
with the coefficients chosen such as to maximize the variance of 
the dimension across all the samples. Subsequent PCs contain 
progressively less of the variance. Each PC is linearly independent 
uncorrelated to all other PC. Typically most variance is contained 
within a few PCs, which can be visualized in a series of two-
dimensional plots. Since the mapping into the new coordinate 
system is given by a weighted linear sum of all original input 
variables (i.e., T cell subset frequencies in peripheral blood), the 
contribution of each original variable to each PC is reflected by 
the size of the corresponding weight coefficients.

support Vector Machines
Support vector machines (SVM) are supervised binary clas-
sification tools (7). Given a set of training data, an SVM seeks 
an optimal separating hyperplane to split data points from two 
classes (e.g., rejection vs. no rejection). In order to accommo-
date non-linear boundaries between the data, a kernel function 
can be used to transform the original input space into a higher 
dimension feature space, where linear structure may be found. 
We initially compared the results of using untransformed data 
with a radial Gaussian kernel when constructing the SVM. No 
difference in classification accuracy was observed and all results 
shown use untransformed data.

The SVM algorithm learns the separating hyperplane such 
that the distance between the plane and the nearest points from 
each class, the margin, is maximized, subject to a cost (governed 
by a tuning parameter C), which penalizes points that falls on the 
wrong side of the margin. The value of the cost parameter, C, was 
determined by optimizing model accuracy over a range of values.

The algorithm, which yields the optimal separating hyper-
plane, is defined by a linear combination of the data dimensions. 
The linear coefficients defining the hyperplane can be considered 
as a set of weights, which identify those dimensions of the data 
with the greatest influence on the classification.

Additionally, the probability of class membership (e.g., 
 rejection vs. no rejection) can be calculated by fitting a logistic 
regression model to the decision values that are output from the 
SVM (8). The decision values are the Euclidean distances that 
define how far each patient sample lies from the optimal separat-
ing hyperplane. Loosely speaking, the further sample lies from 
the boundary, the greater the probability that the sample belongs 
to its predicted class.

Validation
A key element to evaluate the power of any statistical model in 
classification is validation. In order to maximize the statistical 
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power from our initial patient sample size (n = 23), we evaluated 
the model using leave-one-out validation. In this approach, one 
patient is selected, and all results from that patient are removed 
from the data set. The SVM model is then optimized using the 
data from the remaining 22 patients, together with their known 
classification labels (i.e., reject/non-reject). The model is then 
used to predict the classification of the sample, which had been 
left out. In this way, the classification algorithm is built without 
including any knowledge from the patient who is being tested, and 
this patient serves as an unbiased validation case. The procedure 
is repeated for each individual patient, and the success rate of the 
classification is measured over all 23 patient data sets. We also 
used more traditional train/test strategy. An additional 5 patients 
were included into our study and independently analyzed by flow 
cytometry by a scientists who was not involved with the analyses 
of the initial 23 patients. A repeat flow analysis of a previously 
studied patient was also included to test reproducibility. The SVM 
algorithm trained on the initial 23 patients was used to assess the 
rejection risk of the 6 independently analyzed patients.

All analyzes were performed using statistical programing 
language R. SVM were implemented using the package e1071, 
while PCA and hierarchical clustering were performed using the 
heatmap.2 and prcomp functions in the core library.

Traditional statistical tests for significance were carried out 
using Mann–Whitney tests with Bonferroni test for multiple 
testing where required.

resUlTs

Table 1 shows a summary of the patient cohort included in this 
study. Of the 28 patients, histologically confirmed rejection was 
seen in 11 patients and 17 did not show signs of rejection. The 
CMV status and the percentage of patients with live and cadaveric 
donor organs were similar in the two subgroups. We did not 
see an increased incidence of CMV reactivation and viremia in 
the patients who had rejection episodes. BK infection was not 
detected in any of the patients.

The antibodies used in our T cell panel were specific for 
nine molecules that allowed us to define distinct T cell subsets, 
and quantify the proportion of activated cells (using CD25 and 
HLA-DR) and exhausted cells (using PD-1) within each subset. 
FlowJo analysis of the flow cytometry data was used to extract 
quantitative data on 52 T cell phenotypes each defined by expres-
sion of a particular combination of markers (see Table S1 in 
Supplementary Material for full list). Figure 1 shows a representa-
tive flow cytometry profile obtained after staining with our T cell 
panel and indicates some of the T cell subsets that were included 
in the bioinformatics analysis. We used the expression pattern of 
CD45RO and CD62L to define T cells that were phenotypically 
defined as naive (N), central memory (CM), effector memory 
(EM), or end-stage (ES) effector cells (Figures  2B,C). We also 
used a cocktail of nine antibodies to define subsets of NK, iNKT, 
and γ/δ T cells. In this case, the bioinformatic analysis included 13 
distinct phenotypes (see Table S2 in Supplementary Material for 
full list). Figure S1 in Supplementary Material shows a representa-
tive plot of this panel and some of the subsets identified. In total, 

multi-color flow cytometry was initially performed on 23 patients 
using >150 samples collected at six- to eight-time points pre- and 
post-transplantation. An additional 5 patients were included in 
our study and independently analyzed to validate the prediction 
tool derived from the analysis of the first 23 patients.

We employed PCA as a powerful exploratory tool for revealing 
potential structure within the data set of the 23 patient cohort. The 
first few principal components often capture most of the informa-
tion in the data and are therefore a very effective way to reduce 
the dimensionality of a high-dimensional data set. We initially 
based our analysis on the adaptive immune panel. Figure  2A 
shows a PCA based on T cell subset frequencies, as determined 
by our adaptive immune panel. Strikingly, patients who experi-
enced rejection tend to cluster toward the left hand side, with 
PC1 scores <0. Conversely, patients who did not present with 
any signs of clinical rejection tend to have positive PC1 scores. 
Interestingly, the distinction between graft rejection and toler-
ance was lost when patient subset frequencies were normalized 
to pretransplant baseline measurements (Figure 2B). Differences 
between patients at baseline are therefore more important than 
relative differences post transplant in predicting graft prognosis 
post transplantation.

In contrast to the results obtained with the T cell panel, no 
clear stratification of rejection and tolerance was evident when 
the data obtained with the NK, iNKT, and γ/δ T immune panel 
were analyzed (Figure 2C). The frequency of the subsets identi-
fied by this panel therefore had no detectable predictive power for 
the development of rejection episodes in our cohort.

The first PCA component of the T cell panel suggested differ-
ential clustering of patients with and without rejection episodes. 
We therefore went on to investigate which T cell subsets were most 
important in driving this segregation. PCA allocates a “loading” 
to each dimension of the data (i.e., each T cell subset analyzed), 
which lie between −1 and 1. We identified those subsets with 
the largest, negative PC1 loadings (Table 2) to determine which 
subsets were implicated in predicting graft rejection. A common 
feature of all the largest loadings was the expression of PD1 in the 
identified T cell subsets. The largest negative loading in the CD8+ 
T cell population was seen in the PD1-expressing ES effector cells 
(CD45RO−/CD62L−). The negative loading in the CD4+ T cell 
population was similar in the N subset (CD45RO−/CD62L+), 
and in Treg cells (identified as CD25+ CD127 dull) with the ES 
(CD45RO−/CD62L−) phenotype.

On the basis of these results, we examined in more detail the 
expression of PD1 in the CD4+ and CD8+ T cell subpopulations in 
patients who had rejection episodes, compared to those who did 
not. Figure 3A shows flow cytometry plots of PD1 expression in 
a representative patient of each class. As predicted from the PCA 
analysis, the comparison of the flow cytometry plots showed that 
increased expression levels of PD1 was associated with rejection 
episodes. The summary of the PD1-expressing T cell subsets in all 
patient samples analyzed is shown in Figure 3B.

While PCA suggests that immune-phenotyping data can 
stratify patients with risk of transplant rejection, it is not designed 
to provide accurate predictions from new data. SVM are a class 
of very well-studied machine learning classification tools (see 
Materials and Methods). We constructed SVM classifiers based 
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on data from three distinct time points during the course of renal 
transplantation: baseline, mid (between 4 and 6 weeks post-tx), 
and late (9–12 weeks post-tx). Using leave-one-out validation, we 
observed that baseline and midtime points correctly predicted 
the rejection status in 77 and 82% of the samples, respectively. 
The SVM based on later time points showed a poorer ability to 
discriminate, correctly predicting 68% of the samples. The SVM 
risk score (see Material and Methods) based on baseline/pre-
transplant phenotype alone (which was available for 20 patients, 
9 rejectors, and 12 non-rejectors) is shown in Figure 4A. A SVM 

risk score of >0.5 suggests that the patient is more likely to exhibit 
a rejection episode, while a score of <0.5 suggests the patient is 
more likely not to show a rejection score. The further the risk 
score is from 0.5, the greater the confidence of the prediction.

We initially used leave-one-out validation because this provides 
the most powerful way to analyze the relatively small number of 
patients available for this study. However, we also used the more 
traditional train/test strategy. We selected the first (by date order 
of transplant) seven rejector and non-rejector data sets (in order 
to have a balanced data set) and used the data from these patients 
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TaBle 2 | The five largest negative loadings (predictive of rejection) 
obtained from Pca of T cell subset frequencies.

T cell subset loading

CD8+ CD45RO− CD62L− PD1+ −0.28

CD8+ PD1+ −0.25

CD4+ PD1+ −0.23

CD4+ CD25+ CD127− CD45RO− CD62L− PD1+ −0.22

CD4+ CD45RO− CD62L+ PD1+ −0.22
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further support for the robustness of the predictions. Finally, we 
used the SVM built on the first set of 23 patients analyzed to predict 
the rejection status of five further patients for whom baseline pre-
transplant samples were available and independently analyzed by 
a scientist who was not involved with the first cohort analysis. As a 
control for reproducibility, we included one sample of a patient of 
the first cohort in this independent analysis. All analyzed patients 
were correctly predicted to be non-rejectors (Figure 4B).

The SVM generates a set of weights (between −1 and 1) equiva-
lent to those generated by the PCA weights and corresponds to 
“loadings” given to each dimension of the data (i.e., each T cell 
subset analyzed) when generating the classifying hyperplane. We 
analyzed the weights given to each data subset by the optimized 
SVM. In agreement with the results of the PCA, three of the five 
subsets with the largest coefficients included PD1 (Table 3). The 
remaining two subsets consisted of CD8 and CD4 EM T cells 
expressing CD25 and CD127, respectively. The mean frequency 
(as a proportion of parent) of each of all five subsets is shown in 
Figure 5A, and flow cytometry plots of PD1 expression in three 
representative patients with and without rejection episodes are 
shown in Figure 5B.

In addition to prediction of rejection prior to transplantation, 
it would be useful to use non-invasive screening to identify 
rejection post-transplantation without the need for biopsy. We 
therefore examined whether the immune-phenotype could 
identify rejection episodes using the SVM-derived probabilities 
of class membership (see Materials and Methods). We calculated 
the risk of rejection episodes over the 12-week period post-tx for 
each time point when a blood sample was collected and analyzed. 
Figure 6A shows the projected risk of rejection for each of the 11 
patients who clinically presented with either cell- or antibody-
mediated rejection; the time of rejection episodes is indicated 
with diamonds. In patients 1, 6, and 7, the rejection occurred 
after 12 weeks (see Table 1), which was outside the time period 
of collecting samples for this study. All but one of the remaining 
seven patients had a risk score >0.5, and five of the seven patients 
had a risk score greater than 0.75 at the time point when rejection 
episodes occurred. In contrast, only 4 out of 12 patients without 
rejection episodes had a risk score of more than 0.75 at any time 
point during the 12-week observation period (Figure 6B).

DiscUssiOn

The major conclusion of our study is that the immune-phenotype 
of the peripheral blood T cell compartment contains informa-
tion, which can predict the risk of a rejection episode following 
renal transplantation. In contrast, the panel defining NK, iNKT, 

to build an SVM. We then used this SVM to predict the outcome 
of the remaining 10 patients. The SVM correctly predicted 7/10 of 
the remaining patients even using this small training set, providing 
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and γ/δ T cells did not identify a phenotype, which segregated 
between rejection and non-rejection. This may reflect a dominant 
role of α/β T cells in acute graph rejection, but it is also possible 
that our “innate lymphoid” flow cytometry panel did not include 
markers that might identify subsets involved in regulating trans-
plant tolerance or rejection. It should be noted that we have used 
a limited number of markers to identify the T cell subsets and 

the expression of activation and exhaustion markers. It is pos-
sible that revised panels that include additional markers might 
improve the ability to identify patients at risk of rejection. In this 
study, we have not explored the risk factors of antibody-mediated 
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rejection, which is mediated by donor-specific antibodies that are 
present in patients before transplantation.

Advances in multi-color flow cytometry have led to a continual 
increase in the complexity of immune-phenotyping. The introduc-
tion of new technologies, such as mass-cytometry or single cell 
transcriptomics, has the potential to further increase the number 
of molecules that can be quantified (9, 10). However, the high cost 
and technical challenges of using these new technologies mean 
that flow cytometry remains the technique of choice for immune 
phenotyping in most clinical settings. In this study, we have used 
nine parameters, which generated a large number of possible 
combinations that cannot be comprehensively interrogated using 
manual approaches. In addition, there is an increasing awareness 
that a classification on the basis of a few defined phenotypes is 
a simplification of the underlying biology. Computational tools, 
which can efficiently mine the increasingly high-dimensional 
space of immune-phenotyping data, are therefore likely to 
become a key to future biomarker discovery and translation into 
the diagnostic laboratory.

We have used a hybrid approach, in which quantitative popu-
lation frequency data is first collected using classical manual flow 
cytometry analysis and then analyzed using high-dimensional 
computational statistical tools. This combination of manual and 
computational analysis was used to define 52 different T cell 
subsets, many of which were nested in each other. The overall 
accuracy of the classification was >75% when using samples col-
lected either before, at or within 6 weeks post transplant. These 
data provide a strong rationale for further immunophenotyping 
studies, with the dual objective of increasing the size of the training 
cohort and thus the power of the machine learning algorithm, and 
perhaps incorporating additional immunophenotyping markers, 
which might further dissect the intrinsic variation in the immune 
status of patients, and hence accurately predict the response to the 
transplant and the associated immunosuppression.

In addition to the ability to predict rejection episodes, two 
important further conclusions emerge from both the PCA and 
SVM analysis. The first is that the predictive power lies pre-
dominantly within the pretransplant immunophenotype, and 
that the phenotype predictive power becomes much weaker at 
later times. In the first few weeks after transplantation, there is 
remarkably little change in the immune phenotype, but as time 
progresses the phenotype of different patients seems to converge. 
This unexpected finding provides a rationale to potentially use 
the pretransplant immune phenotype to identify patients at risk 
of developing rejection episodes, and then increase immune sup-
pressive medication during the early phase after transplantation.

The second finding is that high PD1 expression in several 
T cell subsets predicts a higher rate of rejection. The function 
of PD1 has been studied extensively (11), although its role in 
Treg is less well understood (12). PD1 up-regulation has been 
observed in murine models of chronic viral infection and was 
found to identify exhausted T cells with reduced function (13). 
Similar observations have been made in cancer patients, and the 
treatment with anti-PD1 antibodies has reversed T cell dysfunc-
tion and resulted in impressive clinical benefits for patients (14). 
Recent experiments have indicated that the PD1/PD-L1 pathway 
is involved in Treg-mediated suppression of autoreactive B cell 

responses (15). However, this did not involve PD1-positive 
Treg, as the suppression was mediated by PD-L1 expressed 
by Treg binding to PD1 expressed by the autoreactive B cells. 
Maybe more relevant for our observation is a recent study that 
demonstrated increased numbers of PD1-expressing Treg in the 
blood of patients suffering from an autoimmune condition that 
results in generalized vitiligo (16). Interestingly, upregulation of 
PD1 in Treg was also found in patients with chronic hepatitis C 
infection, and the observation that blockade of PD1 improved 
Treg function suggested that PD1 acted as negative regulator of 
Tregs in this setting (17). Together, these studies suggest that 
chronic immune activation (autoimmune or chronic infec-
tion) can result in the accumulation of PD1-expressing Treg 
with impaired functional activity. In our case, increased PD1 
expression before transplantation might identify patients with a 
history of chronic immune activation combined with impaired 
Treg function, which together might enhance the potential of 
mounting damaging T cell responses against the transplanted 
kidney. This is in keeping with the recent demonstration that 
variations in the immune response profile of humans are 
strongly affected by environmental factors (18). It is possible that 
dialysis, age, and increased pathogen exposure might impact on 
the number of PD1-expressing Treg; in our cohort more patients 
were on dialysis and had a higher median age in the rejection 
group compared to the group without rejection. We note that 
an mRNA expression study in the peripheral blood of renal 
transplant patients showed that increased levels of PD1 mRNA 
was associated with acute rejection episodes (19). In this study, 
we have not analyzed the expression profile of CD57, a marker 
that has been linked to the resistance of renal transplant patients 
to respond to treatment with recombinant proteins that inhibit 
CD28 costimulation (20).

In conclusion, our study shows how computational tools, 
which are able to analyze the increasingly high-dimensional 
immunophenotyping data available, can be used to generate bio-
markers useful for patient stratification, and to identify new bio-
logical features underlying a complex process such as transplant 
rejection. Validation of these results on a larger cohort is required, 
but this study suggests that immune-phenotyping may be useful 
in guiding patient management and may provide a strategy for 
developing personalized immune suppressive regimes according 
to the predicted rejection risk assessed prior to transplantation.
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