47 research outputs found

    Fgfr3 Is a Transcriptional Target of Ap2δ and Ash2l-Containing Histone Methyltransferase Complexes

    Get PDF
    Polycomb (PcG) and trithorax (trxG) proteins play important roles in establishing lineage-specific genetic programs through induction of chromatin modifications that lead to gene silencing or activation. Previously, we described an association between the MLL/SET1 complexes and a highly restricted, gene-specific DNA-binding protein Ap2δ that is required for recruitment of the MLL/SET1 complex to target Hoxc8 specifically. Here, we reduced levels of Ap2δ and Ash2l in the neuroblastoma cell line, Neuro2A, and analyzed their gene expression profiles using whole-genome mouse cDNA microarrays. This analysis yielded 42 genes that are potentially co-regulated by Ap2δ and Ash2l, and we have identified evolutionarily conserved Ap2-binding sites in 20 of them. To determine whether some of these were direct targets of the Ap2δ-Ash2l complex, we analyzed several promoters for the presence of Ap2δ and Ash2l by chromatin immunoprecipitation (ChIP). Among the targets we screened, we identified Fgfr3 as a direct transcriptional target of the Ap2δ-Ash2l complex. Additionally, we found that Ap2δ is necessary for the recruitment of Ash2l-containing complexes to this promoter and that this recruitment leads to trimethylation of lysine 4 of histone H3 (H3K4me3). Thus, we have identified several candidate targets of complexes containing Ap2δ and Ash2l that can be used to further elucidate their roles during development and showed that Fgfr3 is a novel direct target of these complexes

    RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site.</p> <p>Description</p> <p>We have developed the RAS Oncogene Database (RASOnD) as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i) browse the data (ii) search any field through a simple or advance search interface and (iii) perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD.</p> <p>Conclusions</p> <p>This database is a resource and search tool dedicated to Ras oncogenes. It has utility to cancer biologists and cell molecular biologists as it is a ready source for research, identification and elucidation of the role of these oncogenes. The data generated can be used for understanding the relationship between the Ras oncogenes and their association with cancer. The database updated monthly is freely accessible online at <url>http://202.141.47.181/rasond/</url> and <url>http://www.aiims.edu/RAS.html</url>.</p

    Pathway Projector: Web-Based Zoomable Pathway Browser Using KEGG Atlas and Google Maps API

    Get PDF
    BACKGROUND: Biochemical pathways provide an essential context for understanding comprehensive experimental data and the systematic workings of a cell. Therefore, the availability of online pathway browsers will facilitate post-genomic research, just as genome browsers have contributed to genomics. Many pathway maps have been provided online as part of public pathway databases. Most of these maps, however, function as the gateway interface to a specific database, and the comprehensiveness of their represented entities, data mapping capabilities, and user interfaces are not always sufficient for generic usage. METHODOLOGY/PRINCIPAL FINDINGS: We have identified five central requirements for a pathway browser: (1) availability of large integrated maps showing genes, enzymes, and metabolites; (2) comprehensive search features and data access; (3) data mapping for transcriptomic, proteomic, and metabolomic experiments, as well as the ability to edit and annotate pathway maps; (4) easy exchange of pathway data; and (5) intuitive user experience without the requirement for installation and regular maintenance. According to these requirements, we have evaluated existing pathway databases and tools and implemented a web-based pathway browser named Pathway Projector as a solution. CONCLUSIONS/SIGNIFICANCE: Pathway Projector provides integrated pathway maps that are based upon the KEGG Atlas, with the addition of nodes for genes and enzymes, and is implemented as a scalable, zoomable map utilizing the Google Maps API. Users can search pathway-related data using keywords, molecular weights, nucleotide sequences, and amino acid sequences, or as possible routes between compounds. In addition, experimental data from transcriptomic, proteomic, and metabolomic analyses can be readily mapped. Pathway Projector is freely available for academic users at (http://www.g-language.org/PathwayProjector/)

    Using Evolutionary Conserved Modules in Gene Networks as a Strategy to Leverage High Throughput Gene Expression Queries

    Get PDF
    Background: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seednetwork of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. Methodology/Principal Findings: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. Conclusions/Significance: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will facilitate the use of prior biological knowledge to develop rational systems-based hypotheses

    Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies

    Get PDF
    Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG) for a model set of 37 enzyme families for which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest annotation error levels (close to 0% for most families); the two other protein sequence databases (GenBank NR and TrEMBL) and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that average 5%–63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one or more of these databases is >80%. Examination of the NR database over time shows that misannotation has increased from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with “overprediction” of molecular function. These results suggest that misannotation in enzyme superfamilies containing multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for addressing some of the systematic problems contributing to these high levels of misannotation

    Dynamic Gene Expression in the Human Cerebral Cortex Distinguishes Children from Adults

    Get PDF
    In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system process (pFDR≅0). Moreover, genes known to be important in neuronal function, such as brain-derived neurotrophic factor (BDNF), are included among the genes more variably expressed in childhood. We propose that the developmental period of heightened childhood neuronal plasticity is characterized by more dynamic patterns of gene expression in the cerebral cortex compared to adulthood when the brain is less plastic. That an overabundance of these genes are annotated to the immune system suggests that the functions of these genes can be thought of not only in the context of antigen processing and presentation, but also in the context of nervous system development

    Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes

    Get PDF
    Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research
    corecore