45 research outputs found

    New application of transglucosidase with α-glucosidase inhibitor in the digestive tract

    Get PDF
    We have studied transglucosidase derived from Aspergillus niger for self-mediation in the gastrointestinal tract as a dietary supplement. This enzyme is very popular to produce oligosaccharides in industry. Prof. Sasaki already reported this enzyme showed oligosaccharides production in the digestive tract which improved microflora level in large intestine and decreased the blood glucose level and the excretion of insulin. The clinical study of this enzyme was performed in 21 healthy volunteers and patients with type 2 diabetes mellitus to check the glucose level in blood and secretion of insulin after meal. This enzyme showed good improvement in biological parameters. Please click Additional Files below to see the full abstract

    Lipase-catalyzed domino Michael-aldol reaction of 2-methyl-1,3-cycloalkanedione and methyl vinyl ketone for the synthesis of bicyclic compounds

    Get PDF
    Synthesis of bicyclic compounds was achieved via a lipase-catalyzed, stereoselective, domino Michael–aldol reaction of 2-methyl-1,3-cycloalkanedione and methyl vinyl ketone. Appropriate reaction conditions, including the type of enzyme, solvent, and temperature, were determined. In addition, the effects of solvent polarity and addtives were investigated. The reaction proceeded in the presence of lipase AS in a solution of 20% acetone in dimethylsulfoxide (DMSO) at 10 °C for 8 days, followed by the addition of p-toluenesulfonic acid (TsOH) to afford bicyclic compounds in 51–83% yields with moderate stereoselectivity. Although this domino Michael–aldol reaction showed only moderate stereoselectivity, even with the acid-supported enhancement of the reaction, these results represent potential new applications for lipase

    Enzymatic Synthesis of a Novel Pterostilbene α-Glucoside by the Combination of Cyclodextrin Glucanotransferase and Amyloglucosidase

    Get PDF
    The synthesis of a novel α-glucosylated derivative of pterostilbene was performed by a transglycosylation reaction using starch as glucosyl donor, catalyzed by cyclodextrin glucanotransferase (CGTase) from Thermoanaerobacter sp. The reaction was carried out in a buffer containing 20% (v/v) DMSO to enhance the solubility of pterostilbene. Due to the formation of several polyglucosylated products with CGTase, the yield of monoglucoside was increased by the treatment with a recombinant amyloglucosidase (STA1) from Saccharomyces cerevisiae (var. diastaticus). This enzyme was not able to hydrolyze the linkage between the glucose and pterostilbene. The monoglucoside was isolated and characterized by combining ESI-MS and 2D-NMR methods. Pterostilbene α-d-glucopyranoside is a novel compound. The α-glucosylation of pterostilbene enhanced its solubility in water to approximately 0.1 g/L. The α-glucosylation caused a slight loss of antioxidant activity towards ABTS˙+ radicals. Pterostilbene α-d-glucopyranoside was less toxic than pterostilbene for human SH-S5Y5 neurons, MRC5 fibroblasts and HT-29 colon cancer cells, and similar for RAW 264.7 macrophages.This research was funded by the Spanish Ministry of Economy and Competitiveness (Grants BIO2016-76601-C3-1-R and BIO2016-76601-C3-3-R).Peer reviewe

    Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN®): review of development and future perspectives

    Get PDF
    The mechanism of action of protein-bound polysaccharide K (PSK; KRESTIN®) involves the following actions: (1) recovery from immunosuppression induced by humoral factors such as transforming growth factor (TGF)-β or as a result of surgery and chemotherapy; (2) activation of antitumor immune responses including maturation of dendritic cells, correction of Th1/Th2 imbalance, and promotion of interleukin-15 production by monocytes; and (3) enhancement of the antitumor effect of chemotherapy by induction of apoptosis and inhibition of metastasis through direct actions on tumor cells. The clinical effectiveness of PSK has been demonstrated for various cancers. In patients with gastric or colorectal cancer, combined use of PSK with postoperative adjuvant chemotherapy prolongs survival, and this effect has been confirmed in multiple meta-analyses. For small-cell lung carcinoma, PSK in conjunction with chemotherapy prolongs the remission period. In addition, PSK has been shown to be effective against various other cancers, reduce the adverse effects of chemotherapy, and improve quality of life. Future studies should examine the effects of PSK under different host immune conditions and tumor properties, elucidate the mechanism of action exhibited in each situation, and identify biomarkers
    corecore