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Abstract: Synthesis of bicyclic compounds was achieved via a lipase-catalysed, stereoselective, 

domino Michael-aldol reaction of 2-methyl-1,3-cycloalkanedione and methyl vinyl ketone. 

Appropriate reaction conditions, including the type of enzyme, solvent, and temperature, were 

determined. In addition, the effects of solvent polarity and addtives were investigated. The reaction 

proceeded in the presence of lipase AS in a solution of 20% acetone in dimethylsulfoxide (DMSO) at 

10°C for 8 days, followed by the addition of p-toluenesulfonic acid (TsOH) to afford bicyclic 

compounds in 51%–83% yields with moderate stereoselectivity. Although this domino Michael-aldol 

reaction showed only moderate stereoselectivity, even with the acid-supported enhancement of the 

reaction, these results represent potential new applications for lipase. 
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1. INTRODUCTION 

-Substitution reactions, including Michael and aldol reactions, are very important in synthetic 

organic chemistry, because they are convenient for the formation of carbon–carbon bonds. In the past, 

important compounds have been synthesised using this type of reaction with metal[1,2] and organo 

catalysts. [3,4] For example, the Michael reaction was used for the synthesis of the anti-influenza agent 

oseltamivir,[5] whereas an aldol reaction was used for the synthesis of the anti-cancer agent rhizoxin 

D.[6] However, most of these catalysts possess various disadvantages, such as expensive syntheses, 

commercially unavailability, harsh reaction conditions and complicated design. In contrast, 

biocatalysts have many advantages, including low cost, commercial availability in large quantities, 

environmental friendliness, mild reaction conditions, and high stereoselectivity even when they are 

used as received. 

 Lipases are biocatalysts known to catalyse the hydrolysis of triglycerides in vivo and are used as 

catalysts for kinetic resolution in synthetic organic chemistry by utilising the difference in reactivity 

of both enantiomers in hydrolysis.[7] In addition, lipases have been found to be promiscuous during 

the catalysis of Michael[8,9] and aldol reactions. [10,11] We also reported the Michael reaction of 4-

hydroxycoumarin and benzylideneacetone, which was catalysed by lipase AS in dimethylsulfoxide 

(DMSO) at 20°C for 8 days. This afforded the well-known anti-coagulant agent warfarin in 85% and 

45% enantiomeric excess (ee). [13] This is the best stereoselectivity reported for the synthesis of 

warfarin catalysed by lipases. [14] 

Domino reactions are very effective in forming more than one bond in a single step via several 

consecutive reactions. For example, the bicyclic compounds Hajos–Parrish ketone (1a), Wieland–

Miescher ketone (1b) and compound 1c were synthesised via a domino Michael–aldol reaction of the 

corresponding diketones (2a-c) and methyl vinyl ketone (3) (Scheme 1). These bicyclic compounds 

are useful synthetic intermediates for many bioactive compounds such as the anti-angiogenic agent 

cortistatin A,[15] anti-cancer agent paclitaxel,[16] and ant methicillin resistant staphylococcus aureus 

(MRSA) and anti vancomycin-resistant enterococcus faecium (VREF) antibiotic guanacastepene A.[17] 

Bicyclic compounds 1a–c were previously synthesised using organo catalysts such as proline 

derivatives,[18,19] but their catalytic efficiencies and complicated synthetic methods remain an issue. In 

contrast, only a few reports on promiscuous, single enzyme-catalysed, multi-step or domino reactions 

have been described.[20-22] While a lipase-catalysed domino reaction of Wieland–Miescher ketone was 

recently reported, no stereoselectivity was observed. [23] 

 

(Scheme1) 

 

We proposed that the Michael reaction used in the synthesis of warfarin [13] could be applied to the 

domino reaction, affording stereoselective products from the novel lipase-catalyzed reaction that 
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require less catalyst. Thus, we developed a lipase-catalysed, stereoselective, domino Michael-aldol 

reaction for synthesis of bicyclic compounds (1a–c) from 1,3-diketones (2a–c) and methyl vinyl 

ketone (3). 

 

2. RESULTS AND DISCUSSION 

To determine the appropriate reaction conditions, we investigated the synthesis of Wieland–Miescher 

ketone (1b) via a lipase-catalyzed domino Michael-aldol reaction of 2-methyl-1,3-cyclohexanedione 

(2b) and methyl vinyl ketone (3). The initial reaction conditions were 2b (0.14 mmol), 3 (0.42 mmol), 

lipase (28.4 mg) and anhydrous DMSO (0.7 mL), in accordance with our previous work. [13] 

First, a series of commercially available lipases were screened to determine a suitable catalyst for the 

reaction (Table 1). Focusing simply on the compound 1b, Lipase AYS, PS, AK, PL, Novozyme 435, 

Lipozyme RM IM, Lipazyme CAL-B, Lipozyme TL 100L, Palatase 20000L, Stick Away, and Lipex 

100L afforded low conversions with no stereoselectivity (entries 2–5 and 11–17). In contrast, lipase 

AS, QLM, OF, SL, TL, MY-30, PPL, F-AP-15 and immobilised lipase showed slight stereoselectivity 

(entries 1, 6–10 and 18–20). Lipase AS was determined to be the best catalyst for this domino 

Michael-aldol reaction (entry 1, 28% yield, 9% ee). In the presence of BSA and the absence of lipase, 

the product was not observed (entries 21 and 22). Thus, the domino Michael-aldol reaction seemed to 

be catalysed by lipase. The stereochemistry of 1b obtained under these reaction conditions was entirely 

S-form. Unfortunately, in these reactions, the intermediate Michael adduct (4b) in addition to desired 

1b were obtained. The results suggested that the equilibrium of the second step in scheme 1 (between 

4b and 5b) of the aldol reaction was in favour of the Michael adduct (4b) as we discuss in detail below 

(around Table 4 and 5).  

 

(Table 1) 

 

In general, the solvent for the enzyme-catalysed reaction affected not only chemical yield but also 

stereoselectivity;[12] therefore, the choice of optimal reaction solvent is very important. In the past, 

some conventional organic solvents were surveyed. The results indicated that varying the solvent had 

significant effects on the activity and stereoselectivity of the lipase AS-catalysed domino Michael-

aldol reaction (Table 2). While no product was observed with acetone (entry 10), cyclohexane, n-

hexane, toluene, 1,4-dioxane, teterahydrofuran (THF), EtOAc, CHCl3, EtOH, H2O and methyl vinyl 

ketone showed moderate chemical yields but no stereoselectivity (entries 1–3, 5–7, 9, 14, 16 and 17). 

In contrast, Et2O, CH2Cl2, dimethylformamide (DMF), DMSO, 2-PrOH and MeOH demonstrated 

slight stereoselectivity (entries 4, 8, 11–13 and 15). The best result was obtained in DMSO with 

product yield of 34% and 9% ee (entry 12). 
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(Table 2) 

 

In previous reports, the chemical yield and stereoselectivity of lipase-catalysed, asymmetric aldol 

reactions were improved when a mixed solvent was used.[24] Therefore, we investigated the use of a 

DMSO-based mixed solvent system. As a result (Table 3), 1 : 1 ratio of solvent/DMSO did not 

improve the results obtained with pure DMSO (entries 1–5). However, the reaction in a mixed solvent 

system of 20% acetone in DMSO afforded the best result with a 44% yield and 11% ee (entry 7). This 

indicated that an aprotic polar solvent was preferred for the lipase-catalyzed domino Michael-aldol 

reaction with the polarity of the solvent being important factor. 

 

(Table 3) 

 

The obtained results (Table 3, entry 7) suggested that the equilibrium of the second step (between 4b 

and 5b) of the aldol reaction was in favour of the Michael adduct (4b). Thus, to shift the equilibrium 

to the terminal product (1b), dehydration of the aldol adduct (5b) was promoted through the addition 

of an acid to the reaction system. Various acids (0.5 mol%) were added after reacting  for 3 days. 

When HCl, camphorsulfonic acid (CSA), trifluoroacetic acid (TFA) and pyridinium p-

toluenesulfonate (PPTS) were added, chemical yield and stereoselectivity were nearly equal to those 

without additives. However, the addition of p-toluenesulfonic acid (TsOH) improved the chemical 

yield and stereoselectivity to 64% and 12% ee, respectively (Table 4, entry 2). Any products were 

observed for the reaction in the presence of with TsOH and the absence of lipase (entry 4). These 

results indicated that the addition of acid enhanced the dehydration reaction. Following this, we 

investigated the amount of added TsOH (1.0–10.0 mol%) and reaction time (0.5–12 h). The results 

indicated that the optimal amount of TsOH was 5.0 mol% (entry 2). Furthermore, the chemical yield 

was increased upon extending the reaction time to 2 h, resulting in 64% chemical yield and 12% ee 

(entry 6). From these results, we established a lipase catalysed domino Michael-aldol reaction with 

good chemical yield. 

 

(Table 4) 

 

The optimal conditions for the formation of 1b involved a mixed solvent system of 20% acetone in 

DMSO in the presence of TsOH (64% yield, 12% ee, Table 5, entry 5). However, as shown in Table 

2, entry 10, no product was obtained when pure acetone was used as the solvent. Thus, we proposed 

that the polarity of the solvent is important for the reactivity of the lipase; therefore, the relationship 

between polarity values [ET(30)] and reactivity was investigated (Figure 1). The examined solvent 

systems were acetone/DMSO and DMF/DMSO. The more the ratio of DMSO increased (ratio 
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of acetone (or DMSO) decreased), the more ET (30) values increased. The reactivity in both 

system were had a maximal value around ET(30) = 44.5 at which the components of the solvent system 

were 20% acetone in DMSO (44%yield, 11% ee) and 30% DMF in DMSO (40% yield, 10% ee). This 

suggested that the solvent polarity was appropriate at least for this type of reaction. 

 

(Figure 1) 

 

Next, we applied this method to the synthesis of other bicyclic compounds (1a and 1c). Diketone 2c 

was synthesized according to the procedure reported by Piekut et al.[25] As a result (Table 6), bicyclic 

compounds (1a–c) were obtained from all diketones with chemical yields being increased upon the 

expansion of the ring size, resulting in poor stereoselectivities of 3% ee (1a), 4% ee (1c) and 12% ee 

(1b) (entries 1-3).

 

(Table 5) 

 

(Figure 2) 

 

 In general, chemical yield and stereoselectivity were affected by reaction temperature. When the 

reaction temperature sets lower, the reaction rate becomes lower but the stereoselectivity getting higher 

in the enzymatic reaction.[26] Therefore, the reaction temperature was investigated to improve the 

stereoselectivity of the domino Michael-aldol reaction (Figure 2a).  The best chemical yields [66% 

(1a), 82% (1b) and 83% (1c)] with low stereoselectivity were obtained at 50°C, while the best 

stereoselectivities [5% ee (1a), 18% ee (1b) and 8% ee (1c)] were obtained at 10°C. The chemical 

yield increased upon increasing reaction temperature, while stereoselectivity increased with 

decreasing reaction temperature. Next, the reaction time was investigated to improve the chemical 

yield at 10°C. As a result (Figure 2b), chemical yields were increased upon increasing reaction time, 

while maintaining the stereoselectivity. The best results were 51% yield 5% ee (1a), 79% yield 18% 

ee (1b) and 83% yield 8% ee (1c) at 10°C for 8 days. No improvement in chemical yield was observed 

after this time. 

 

 In general, lipase has an active site for histidine, aspartic acid and serine for hydrolysis. Although the 

amino acid sequence of lipase AS has no yet been determined, we assumed that these histidine, aspartic 

acid and oxyanion holes contributed to the mechanism of this lipase-catalyzed domino Michael-aldol 

reaction similar to hydrolysis, leading to the proposed aldol reaction[12] (Scheme 2). The negatively 

charged carboxylate anion of aspartic acid was able to abstract the imidazole proton of histidine. The 

imidazole anion of histidine acted as a base to abstract the carbonyl -proton of diketone 2b. 
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Meanwhile, the carbonyl oxygen of 3 can become trapped in the oxyanion hole activating the ,-

unsaturated ketone. Diketone 2b acted as a Michael donor for 3, affording 4b. The carbonyl oxygen 

of 4b may then be trapped by the oxyanion hole, abstracting its carbonyl -proton as before. 

Negatively charged 4b underwent intramolecular nucleophilic attack at the trapped carbonyl carbon 

in the oxyanion hole. The hydroxy group of the aldol adduct (5b) was then activated for protonation 

by TsOH, affording 1b via dehydration. Stereoselectivity may be affected by the conformation of the 

amino acid side chains of lipase; however, the detailed conformation of lipase AS is still unclear. 

  

(Scheme 2) 

 

3. CONCLUSION 

 In summary, we developed a stereoselective domino Michael-aldol reaction catalyzed by lipase. The 

syntheses of bicyclic compounds (1a–c) using this lipase-catalyzed domino Michael-aldol reaction 

were accomplished using lipase AS in a mixed solvent system of 20% acetone in DMSO at 10°C for 

8 days, followed by the addition of TsOH at 10°C, resulting in 51%–83% chemical yields and 5%–

18% ee. However, for the practical use, this reaction temperature and reaction time are might be 

slightly unuseful and the reaction at 30°C may be more applicable even if they have some very low 

selectivity. 

 

(Scheme 3) 

 

 In the past, lipase-catalyzed domino Michael-aldol reactions were found to have no stereoselectivity. 

Although this domino Michael-aldol reaction showed only moderate stereoselectivity, even with the 

acid-supported enhancement of the reaction, these results represent potential new applications for 

lipase. Further studies are now underway in our laboratory, including the investigation of superior 

reaction conditions using mutant lipases, as well as studies exploring the reaction mechanism. 

 

4. EXPERIMENTAL 

Typical reaction procedure 

A mixture of 2-methyl-1,3-cycloalkanedione (2a–c) (0.14 mmol) and lipase AS (28.4 mg, 0.81 mol, 

0.6 mol%) in a solution of 20% acetone in DMSO (0.7 mL) was incubated under an Ar atmosphere at 

10°C for 5 min. Methyl vinyl ketone (3) (35 L, 0.42 mmol, 3.0 equiv.) was then added to the reaction 

mixture and incubated under Ar at 10oC for 8 days, at which point TsOH was added and the reaction 

proceeded at 10°C for 2 h. The progress of the reaction was monitored by TLC. The enzyme was 

filtered and partitioned between EtOAc and H2O. The organic layer was dried over anhydrous MgSO4 

and concentrated in vacuo. Purification of the residual mixture by column chromatography on 
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aluminum oxide using hexane: EtOAc (3:1 then 1:1, v/v) as the eluent afforded (S)-bicyclic compounds 

(1a–c). 
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Table 1. Domino Michael-aldol reaction of 2-methyl-1,3-cyclohexanedione (2b) and methyl vinyl 

ketone (3) catalysed by various lipasesa) 

Entry Enzyme 4b yieldb) (%)
1b 

yieldb) (%) eec) (%) 

1 AS 7 34 9 

2 AYS 11 12 - 

3 PS 11 13 - 

4 AK 5 7 - 

5 PL 5 5 - 

6 QLM 8 9 4 

7 OF 15 7 2 

8 SL 8 13 4 

9 TL 13 5 4 

10 MY-30 8 4 2 

11 Novozyme 435 1 23 - 

12 Lipozyme RM IM n.d.d) 10 - 

13 Lipozyme CAL-B 4 18 - 

14 Lipozyme TL 100L 11 7 - 

15 Palatase 20000L 3 5 - 

16 Stick Away 15 13 - 

17 Lipex 100L 4 9 - 

18 PPL 12 20 3 

19 F-AP-15 13 5 5 

20 Immobilised lipase 4 2 3 

21 BSA n.d.d) n.d.d) - 

22 Blank n.d.d) n.d.d) - 

a) Experimental conditions: 2-methyl-1,3-cyclohexanedione (0.14 mmol), methyl vinyl ketone (0.42 

mmol) and lipase (28.4 mg) in anhydrous DMSO (0.7 mL) were incubated at 30°C for 3 days in an Ar 

atmosphere. b) Isolated yield. c) Determined by chiral HPLC analysis. d) Not detected. 
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Table 2. Domino Michael-aldol reaction of 2-methyl-1,3-cyclohexanedione (2b) and methyl vinyl 

ketone (3) in various solventsa) 

Entry Solvent 4b yieldb) (%)
1b 

yieldb) (%) eec) (%) 

1 Cyclohexane 2 3 - 

2 n-Hexane 3 4 - 

3 Toluene 12 5 - 

4 Et2O 3 10 2 

5 1,4-Dioxane 3 3 - 

6 THF 5 11 - 

7 EtOAc 4 3 - 

8 CH2Cl2 10 17 3 

9 CHCl3 7 18 - 

10 Acetone n.d.d) n.d.d) - 

11 DMF 9 23 5 

12 DMSO 7 34 9 

13 2-PrOH 5 13 2 

14 EtOH 14 4 - 

15 MeOH 8 7 4 

16 H2O 15 13 - 

17e) Methyl vinyl ketone 24 27 - 

a) Experimental conditions: 2-methyl-1,3-cyclohexanedione (0.14 mmol), methyl vinyl ketone (0.42 

mmol) and lipase AS (28.4 mg) in solvent (0.7 mL) were incubated at 30°C for 3 days in an Ar 

atmosphere. b) Isolated yield. c) Determined by chiral HPLC analysis. d) Not detected. e) No solvent. 
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Table 3. Domino Michael-aldol reaction of 2-methyl-1,3-cyclohexanedione (2b) and methyl vinyl 

ketone (3) in various DMSO-based various mixed solvent systemsa) 

Entry Solvent/DMSO 4b yieldb) (%)
1b 

yieldb) (%) eec) (%) 

1 50% 2-PrOH  5 21  5 

2 50% MVK 17 29  3 

3 50% CH2Cl2 10 21  5 

4 50% DMF 10 20  7 

5 50% Acetone  4  5  3 

6 30% Acetone 13 25  4 

7 20% Acetone 15 44 11 

8 10% Acetone  8 35  9 

a) Experimental conditions: 2-methyl-1,3-cyclohexanedione (0.14 mmol), methyl vinyl ketone (0.42 

mmol) and lipase AS (28.4 mg) in a mixed solvent DMSO system (0.7 mL) were incubated at 30°C 

for 3 days in an Ar atmosphere. b) Isolated yield. c) Determined by chiral HPLC analysis. 
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Table 4. Effect of the amount of TsOH (1–10 mol%) and reaction time (0.5–12 h) on the reaction of 

2-methyl-1,3-cyclohexanedione (2b) and methyl vinyl ketone (3)a) 

Entry TsOH (mol%) Time (h) 4b yieldb) (%)
1b 

yieldb) (%) eec) (%) 

1 1.0  1.0 2 55 12 

2 5.0  1.0 3 64 12 

3 10.0  1.0 2 58 11 

4 0 (no lipase)  1.0 n.d.d) n.d.d) - 

5 5.0  0.5 9 52 11 

6 5.0  2.0 3 64 12 

7 5.0  6.0 2 62 11 

8 5.0 12.0 2 63 13 

a) Experimental conditions: 2-methyl-1,3-cyclohexanedione (0.14 mmol), methyl vinyl ketone (0.42 

mmol) and lipase AS (28.4 mg) in a solution of 20% acetone in DMSO (0.7 mL) were incubated at 

30°C for 3 days in an Ar atmosphere, followed by the addition of TsOH (1.0–10.0 mol%) and 

incubation for additional 0.5–12.0 h. b) Isolated yield. c) Determined by chiral HPLC analysis. 
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Table 5. Syntheses of bicyclic compounds (1a–c) via the domino Michael-aldol reaction of diketones 

(2a–c) and methyl vinyl ketone (3)a) 

Entry n 4a-c yieldb) (%)
1a-c 

yieldb) (%) eec) (%) 

1 1 5 45 3 

2 2 3 64 12 

3 3 4 67 4 

a) Experimental conditions: 2-methyl-1,3-cyclohexanedione (0.14 mmol), methyl vinyl ketone (0.42 

mmol) and lipase AS (28.4 mg) in a solution of 20% acetone in DMSO (0.7 mL) were incubated at 

30°C for 3 days in an Ar atmosphere, followed by the addition of TsOH (0.5 mol%) and incubation 

for additional 2 h. b) Isolated yield. c) Determined by chiral HPLC analysis. 
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Figure 1 
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Figure 2 
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Figure captions 

Figure 1. Effect of the polarity value [ET(30)] of the mixed solvent system on the domino Michael-

aldol reaction (acetone/DMSO yield: ●, ee: ■, DMF/DMSO yield: ○, ee: □).  

Reaction conditions: 2-methyl-1,3-cyclohexanedione (2b, 0.14 mmol), methyl vinyl ketone (3, 0.42 

mmol), and lipase AS (28.4 mg) in a mixed solvent (0.7 mL) at 30°C for 3 days, followed by the 

addition of TsOH (0.5 mol%) and incubation at 30oC for 2 h. 

 

Figure 2. Effect of (a) reaction temperature and (b) reaction time on the domino Michael-aldol reaction 

(yield: 1a ●, 1b ■, 1c ▲, ee: 1a ○, 1b □, 1c △). 

Reaction conditions: 2-methyl-1,3-cycloalkanedione (2a-c, 0.14 mmol), methyl vinyl ketone (3, 0.42 

mmol), lipase AS (28.4 mg) in a solution of 20% acetone in DMSO (0.7 mL).  
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Scheme 1 
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Scheme 2 

 

  



 19

Scheme 3 
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Scheme Captions 

 

Scheme 1. Syntheses of various bicyclic compounds (a: n = 1, b: n = 2, c: n = 3) 

 

Scheme 2. Proposed mechanism of lipase AS-catalysed domino Michael-aldol reaction of 2-methyl-

1,3-cyclohexanedione (2b) with methyl vinyl ketone (3) 

 

Scheme 3. Optimal conditions for the lipase catalysed domino Michael-aldol reaction

 


