18 research outputs found

    Molecular Genetics of Genomic Imprinting

    No full text
    International audienc

    Molecular Genetics of Genomic Imprinting

    No full text
    International audienc

    Mammalian Genomic Imprinting

    No full text
    International audienc

    Mammalian Genomic Imprinting

    No full text
    International audienc

    Mammalian Genomic Imprinting

    No full text
    International audienc

    Self-Healing Coatings Consisting of an Outer Electrodeposited Epoxy Resin Layer and an Inner Porous Anodic Oxide Layer with Healing Agents for the Corrosion Protection of Al Alloys

    No full text
    Recently, new surface treatments for the corrosion protection of Al alloys by forming self-healing layers have attracted the attention of many researchers. The authors of this paper have previously developed self-healing polyurethane coatings with micro-capsules containing healing agents and porous anodic oxide films filled with healing agents. In this study, self-healing coatings consisting of an outer electrodeposited epoxy resin layer and an inner porous anodic oxide layer with healing agents were developed for the corrosion protection of Al alloys. The corrosion protection abilities of the self-healing coating were shown in Cu2+/Cl− solutions after damaging with indenters and were affected by freezing treatments and the tip angles of the indenter

    ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain

    No full text
    SummaryImprinted genes play essential roles in development, and their allelic expression is mediated by imprinting control regions (ICRs). The Dlk1-Dio3 locus is among the few imprinted domains controlled by a paternally methylated ICR. The unmethylated maternal copy activates imprinted expression early in development through an unknown mechanism. We find that in mouse embryonic stem cells (ESCs) and in blastocysts, this function is linked to maternal, bidirectional expression of noncoding RNAs (ncRNAs) from the ICR. Disruption of ICR ncRNA expression in ESCs affected gene expression in cis, led to acquisition of aberrant histone and DNA methylation, delayed replication timing along the domain on the maternal chromosome, and changed its subnuclear localization. The epigenetic alterations persisted during differentiation and affected the neurogenic potential of the stem cells. Our data indicate that monoallelic expression at an ICR of enhancer RNA-like ncRNAs controls imprinted gene expression, epigenetic maintenance processes, and DNA replication in embryonic cells

    PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome

    Get PDF
    Symmetrical dimethylation on arginine-3 of histone H4 (H4R3me2s) has been reported to occur at several repressed genes, but its specific regulation and genomic distribution remained unclear. Here, we show that the type-II protein arginine methyltransferase PRMT5 controls H4R3me2s in mouse embryonic fibroblasts (MEFs). In these differentiated cells, we find that the genome-wide pattern of H4R3me2s is highly similar to that in embryonic stem cells. In both the cell types, H4R3me2s peaks are detected predominantly at G + C-rich regions. Promoters are consistently marked by H4R3me2s, independently of transcriptional activity. Remarkably, H4R3me2s is mono-allelic at imprinting control regions (ICRs), at which it marks the same parental allele as H3K9me3, H4K20me3 and DNA methylation. These repressive chromatin modifications are regulated independently, however, since PRMT5-depletion in MEFs resulted in loss of H4R3me2s, without affecting H3K9me3, H4K20me3 or DNA methylation. Conversely, depletion of ESET (KMT1E) or SUV420H1/H2 (KMT5B/C) affected H3K9me3 and H4K20me3, respectively, without altering H4R3me2s at ICRs. Combined, our data indicate that PRMT5-mediated H4R3me2s uniquely marks the mammalian genome, mostly at G + C-rich regions, and independently from transcriptional activity or chromatin repression. Furthermore, comparative bioinformatics analyses suggest a putative role of PRMT5-mediated H4R3me2s in chromatin configuration in the nucleus

    PBPK model reporting template for chemical risk assessment applications

    No full text
    Physiologically-based pharmacokinetic (PBPK) modeling analysis does not stand on its own for regulatory purposes but is a robust tool to support drug/chemical safety assessment. While the development of PBPK models have grown steadily since their emergence, only a handful of models have been accepted to support regulatory purposes due to obstacles such as the lack of a standardized template for reporting PBPK analysis. Here, we expand the existing guidances designed for pharmaceutical applications by recommending additional elements that are relevant to environmental chemicals. This harmonized reporting template can be adopted and customized by public health agencies receiving PBPK model submission, and it can also serve as general guidance for submitting PBPK-related studies for publication in journals or other modeling sharing purposes. The current effort represents one of several ongoing collaborations among the PBPK modeling and risk assessment communities to promote, when appropriate, incorporating PBPK modeling to characterize the influence of pharmacokinetics on safety decisions made by regulatory agencies.JRC.F.3-Chemicals Safety and Alternative Method
    corecore