840 research outputs found

    Parameter Identification of Image Models by the Recursive Maximum Likelihood Method

    Get PDF
    This paper considers the problem of identifying the blur parameters of the observed image. It is assumed that the original image is a sample from the homogeneous random field described by a two-dimensional (2-D) semicausal model, and that the point spread function (PSF) characterizing the image blur is symmetric. It is also assumed that the observation noise is negligibly small. By applying the discrete sine transform, we derive a set of nearly uncorrelated ARMA models, which are of non-minimum phase, for the blurred image. Although all-pass components of the MA part of the models can not be estimated, we show that the parameters of the non-minimum phase MA part can be restored by exploiting the fact that the PSF is symmetric. We develop a new algorithm for identifying the blur parameters of the image model from the MA parameters estimated by the recursive maximum likelihood (RML) method. Simulation studies are also included to show the feasibility of the algorithm

    Chemical Vapor-Deposited Amorphous Silicon Nitride

    Get PDF
    Chemical vapor-deposited amorphous Si_3N_4 (CVD-amorphous Si_3N_4) up to 4.2mm in thickness has been prepared from a gaseous mixture of NH_3 and H_2-carried SiCl_4 under various deposition conditions. The formation of the CVD-amorphous Si_3N_4 depended strongly on the deposition temperature, total gas pressure and gas flow rate. The CVD-amorphous Si_3N_4 prepared at 1100-1300℃ does not crystallize by heating at each deposition temperature. Their density and deposition rate are markedly dependent on deposition conditions and have maximum values of 3.00g/cm^3 (94% of the theoretical density of α-Si_3N_4) and 0.36mm/hr, respectively. The Vickers microhardness of the CVD-amorphous Si_3N_4 at room temperature varies between 2200 and 3200kg/mm^2 according to its deposition conditions. The hardness at 1300℃ is 1200~1300 kg/mm^2. The thermal conductivity was 0.010cal/cm/sec/℃ at 20℃ and 0.012cal/cm/sec/℃ at 1300℃. The thermal expansion coefficient at 20~1200℃ is 2.99±0.05/℃. The formation mechanism and the effect of gas flow patterns on the deposition rate of the CVD-amorphous Si_3N_4 are also discussed

    Anomalous inverse proximity effect in unconventional-superconductor junctions

    Full text link
    We investigate the effects of Andreev bound states due to the unconventional pairing on the inverse proximity effect of ferromagnet/superconductor junctions. Utilizing quasiclassical Eilenberger theory, we obtain the magnetization penetrating into the superconductor. We show that in a wide parameter range the direction of the induced magnetization is determined by two factors: whether Andreev bound states are present at the junction interface and the sign of the spin-mixing angle. In particular, when Andreev bound states appear at the interface, the direction of the induced magnetization is opposite to that without Andreev bound states. We also clarify the conditions under which the inverted induced magnetization appears. Applying this novel effect helps distinguishing the pairing symmetry of a superconductor.Comment: 10 pages, 11 figure

    One-pot synthesis of poly(ionic liquid)s with 1,2,3-triazolium-based backbones via clickable ionic liquid monomers

    Get PDF
    Clickable α-azide-ω-alkyne ionic liquid monomers were developed and subsequently applied to the one-pot synthesis of ionically conducting poly(ionic liquid)s with 1,2,3-triazolium-based backbones through a click chemistry strategy. This approach does not require the use of solvents, polymerisation mediators, or catalysts. The obtained poly(ionic liquid)s were characterized by NMR, differential scanning calorimetry, thermogravimetric analysis, and impedance spectroscopy analysis. Moreover, these poly(ionic liquid)s were cross-linked via N-alkylation with a dianion quarternizing agent to achieve enhanced ionic conductivity and mechanical strength. The resulting free-standing films showed a Young's modulus up to 4.8 MPa and ionic conductivities up to 4.60 × 10−8 S cm−1 at 30 °C. This facile synthetic strategy has the potential to expand the availability of poly(ionic liquid)s and promote the development of functional materials

    Capsaicin enhances astaxanthin action in liposomes

    Get PDF
    We previously demonstrated that co-encapsulation of the potent antioxidant astaxanthin (Asx) and tocotrienols into liposomes results in synergistically higher antioxidative activity than the calculated additive activity of each individual antioxidant-containing liposome, due to intermolecular interactions between terminal ring moieties of the two antioxidants and the polyene chain and the triene moiety. We reported that intermolecular interactions depend on the stereochemistry of Asx, and change the electronic state of the Asx polyene moiety. Based on these findings, we hypothesized that antioxidants that interact with Asx at the terminal ring and polyene moieties may enhance the antioxidative activity. Herein, we selected two candidate antioxidants, capsaicin (Cap) and resveratrol, based on their structures, in which the compounds exhibit similar characteristics to tocotrienols. We evaluated the antioxidative capacities of liposomes co-encapsulating Asx and the selected candidates. Based on hydroxyl radical scavenging activity, Cap was found to synergistically enhance the antioxidative activity of Asx at an optimal Asx/Cap ratio. Intermolecular interactions between Asx and Cap are necessary for the synergistic effect, and the Asx stereoisomer 3R,3’R-form (Asx-R) was predicted to most potently interact. Liposomes co-encapsulating Asx-R and Cap exhibited clear synergistic antioxidative activity at an optimal ratio, whereas liposomes co-encapsulating the other Asx stereoisomer and Cap did not demonstrate such activity. Computational chemistry analysis showed that changes in the electronic state of the polyene moiety of Asx-R are crucial for the synergistic activity. These results suggest that antioxidants that can change the electronic state of Asx via intermolecular interactions may enhance the function of Asx
    corecore