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Abstract 

This paper considers the problem of identifying the blur parameters of the 
observed image. It is assumed that the original image is a sample from the 
homogeneous random field described by a two-dimensional (2-D) semicausal model, and 
that the point spread function (PSF) characterizing the image blur is symmetric. It is 
also assumed that the observation noise is negligibly small. By applying the discrete 
sine transform, we derive a set of nearly uncorrelated ARMA models, which are of 
non-minimum phase, for the blurred image. Although all-pass components of the MA 
part of the models can not be estimated, we show that the parameters of the non-mini­
mum phase MA part can be restored by exploiting the fact that the PSF is symmetric. 
We develop a new algorithm for identifying the blur parameters of the image model 
from the MA parameters estimated by the recursive maximum likelihood (RML) 
method. Simulation studies are also included to show the feasibility of the algorithm. 

1 . Introduction 

169 

For the past decades, considerable interest has been directed to the restoration of 

blurred or degraded images by applying the statistical estimation theory.
4
•
7
·
9
•
12

•
15

l In the 

case where all the a priori information about the original images and the degradation 

process such as the AR coefficients of the original image model or the point spread 

function (PSF) that characterizes the degradation is completely known, it is easy to im­

plement most algorithms and a considerable improvement ratio has been achieved. In 

certain cases, we can obtain information about the PSF from the mechanism of the im­

aging system. However, in many other cases, such information or a mathematical model 

for the PSF will not be available. So we have to identify the blur parameters directly 

from the observed image before applying the restoration algorithm. 

To the best knowledge of the authors, the earlier contribution to the identification 

of the unknown image blur is due to Murphy and Silverman,
13

J in which a maximum 

likelihood (ML) formulation is discussed based on the 1-D causal Markov realization of 
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the image developed in 12). Tekalp, Kaufman and Woods
14

) proposed a method of iden­

tifying the AR and blur parameters based on the ML method in the presence of the 

observation noise. More recently, Biemond, Putten and Woods
3
J derived a parallel iden­

tification procedure of the blur where the vector state-space models are decomposed into 

a set of 1-D complex ARMA models by the discrete Fourier transform (DFT). In this 

paper, we consider the problem of identifying the blur parameters of the homogeneous 

image based on the semicausal model under the condition that the observation noise is 

negligibly small, and that the statistical properties of the original image are known. 

This paper is organized as follows. The problem is formulated in Section 2. It is 

assumed that the PSF is symmetric ; this assumption plays a fundamental role in iden­

tifying the PSF. We also derive a vector state-space model with multiple delays. By the 

discrete sine transform (DST), the vector state-space model is decomposed into a set of 

nearly uncorrelated scalar subsystems, from which we obtain a set of ARMA models by 

eliminating the state variables. 

In Section 3, we consider the identification and the invertibility condition for the 

ARMA models.
1
•
11

J We show that the MA part of the model, which corresponds to the 

image blur, is not a minimum phase ; namely, the transfer function does not satisfy the 

invertibility condition. Hence the MA parameters can not be recovered from the 

observed data, since the estimated transfer function is the minimum phase version of the 

original transfer function. It is well known that the original parameter of a non-mini­

mum phase ARMA model can be restored for the case of a non-Gaussian white noise 

using non-quadratic error criteria,2) and for the Gaussian white noise case with a known 

non-stationary covariance function using the ML approach.
10

) Since in the present situa­

tion, the noise is assumed to be stationary Gaussian white, the original parameters of the 

PSF can not be recovered without some other information about the structure of the 

MA part. It is shown that any symmentric PSF can be recovered by exploiting the fact 

that the polynomial associated with the MA part is self-reciprocal. 

In Section 4, we develop a new algorithm for identifying the PSF from the MA pa­

rameters obtained in Section 3. Since the parameters of the ARMA model are express­

ed as polynomials in sine functions which form the basis of DST, we can calculate the 

blur parameters of the observed image from the coefficients of the polynomial. 

Some simulation studies are included in Section 5 to show the efficiency of the pre­

sent algorithm. It is shown that the algorithm works quite well in the case where the 

MA parameters are identified accurately. 

In Section 6, an extension is discussed to the case where the AR parameters of the 

original image are also unknown. In this case, the algorithm becomes a little more com­

plicated, and accurate estimates of the ARMA parameters are needed. 
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We consider a discrete monochromatic image with Nx N array of pixels. The gray 

level of the original and observed images at point (n, m) is denoted by x (n, m) and y 

(n, m), where n and m are the vertical and horizontal position variables, respectively, 

where n, m = 1, •··, N. We assume that the original image x (n, m) is a zero mean, 

homogeneous random field described by a semicausal modef l 

p p f 

x(n, m) = ~ a;o,1:(n-i, m) + ~ ~a 11x(n-i, m-1) +w(n, m) 
i=-P 1--PJ=I (2.1) 

where aoo = 0, a-;,J = a 11 , i = 1, •· ·, p, j = 0, • •·, q, and the non-negative integers p and q 

denote the window of the semicausal model. The w (n, m) is a zero mean homogeneous 

random field with the autocovariance function 

R.,w(i,J)=E{w(n, m)w(n+i, m+J)} 

l 
ui ; i=j=0 

= -a;oui ;j=0, i= ±1, ···, ±P 
0 ; otherwise 

(2.2) 

·where E denotes the mathematical expection. 

We assume that the image blur is modeled by a space-invariant, finite-area moving 

average on the original image as in 4), 6), 8), 9), 12), 15). Thus the observed image y 

(n, m) is expressed as 

t s 

y(n, m) = ~ ~ cux(n-i, m-1) +v(n, m) 
i=-1 J=-S (2.3) 

where v (n, m) is the Gaussian white noise with mean zero and variance a:, the coef­

ficients c11 define the PSF of the blur and the non-negative integers t and s represent the 

extent of the blur. For the sake of simplicity, it is assumed that c11 are symmetric in 

both i and j, satisfying 

I s 

~ ~ C11=l 
l=-t J=-s (2.4) 

Since the observation y (n, m) of (2.3) involves a noncausal combination of the x (n, 

m)'s, we wish to reduce (2.3) to a semicausal representation similar to (2.1) by introduc-

ing the delay in the observation as y (n, m) =y(n, m-s). Also, assuming that the effect 

of the observation noise is so small that it is negligible, (2.3) becomes 

_ t L 

y (n, m) = ~ ~c;,1-sX(n-i, m-l) 
, __ , 1-0 (2.5) 

where L=2s. 
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2. 1 State Space Model 

In order to derive a state-space model for the blurred image, we define Nx 1 vectors 

of image columns as 

x(m) =[x(l, m), x(2, m), •··, x(N, m)F 

w(m) =[w(l, m), w(2, m), •··, w(N, m)F 

y(m) =[y(l, m), y(2, m), •··, y(N, m)F 

(2.6) 

where the superscript ( ·) T denotes the transpose. Let the Nx N matrices A1, j=O, 1, ... , 

q and C,, l=O, 1, •··, L be given by 

(2.7a) 

' j=l,· .. ,q (2.7b) 

and 

, l=O, L. (2.7c) 

It should be noted that A1 and C, are the banded Toeplitz matrices, since the parameters 

a,1 and c,1 are symmetric in i. 
Then, by using (2.6), (2.7a) - (2.7c), we see that (2.1) and (2.5) become 

q 

x(m) = ~Ao'A1x(m-J) +Ao'w (m) 
/=I 

- L 
y (m) = ~C,x(m-l) 

1=0 

(2.8) 

(2.9) 
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where it is assumed that x(n, m) =0 for n~O and n~N+I, and that detAo=FO. It may 

be noted that although w (n, m) defined by (2.2) is not a white noise, w (m) in (2.8) is a 

white noise vector with a zero mean and a covariance matrix 

(2.10) 

where 5mk is the Kronecker delta. Therefore, (2.8) and (2.9) form a horizontally causal 

state-space model with multiple delays for the blurred image, where x (m) is the state 

vector and y (m) is the output vector. 

2. 2 Decomposition of State-Space Model 

According to the derivation of the parallel restoration algorithm for blurred 

images,
8

.9J we decompose the vector state-space models of (2.8) and (2.9) into a set of 

nearly uncorrelated scalar subsystems. Then by eliminating the state variables, we 

obtain a set of ARMA models, to which we can apply the recursive maximum likeli­

hood (RML) method to identify the ARMA parameters. 

Let D be a N x N banded Toeplitz matrix of the form 

D= 

and let Q be the N x N tridiagonal matrix of the form 

Lemma 1 (Jain
6
J): A symmetric banded Toeplitz matrix Dis factored as 

D=f(Q) +Db 

where /(Q) is the polynominal in Q given by 

and where 

- HK) • [K-i] 
d,= '1:: d2k+tTk.t, t (K) = -2-

t-o 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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where [x] denotes the integer part of x, and 

= (-ll(2k+l) ( k+l-1) k=l ... '(K) 
Tk.t k-1 ' ' ' I , (2.16) 

and ro.,=l. The matrix Db in (2.13) is a sparse Hankel matrix of rank at most 2(K-l). 

Lemma 2 : The state-space models of (2.8) and (2.9) can be decomposed into a set 

of scalar subsystems as 

(2.17) 

L 

TJ, (m) = ~g, (A,) 0, (m-1) 
l=O (2.18) 

where 0,(m), ~1 (m) and TJ; (m) are the i-th component of Nx 1 vectors O(m), ~(m) and 

TJ (m), which are the DST's of the image columns x (m), w (m) and y (m), respectively. 

Also, fj (A;), j=O, •··, q and g1 (A1), l=O, •··,Lare the polynomials defined similarly to 

(2.14) in Lemma 1 with deg fj(A;) =P and deg g,(A;) =t where A1=2cos(i1r/ (N+l)) are 

the eigenvalues of the matrix Q. The covariance of ~; (m) is given by 

E{~; (m) ~, (k)} =<1Yo-l (A;)OtJ0mk=<1l.otJomk• (2.19) 

Proof: A derivation is given in 6). D 
From (2.19), we see that~; (m) and ~, (m) are nearly uncorrelated, so are 01 (m) and 

01 (m), where i-~ j. Thus the systems of (2.17) and (2.18) form a set of nearly uncorre­

lated subsystems, so that we can process the image data TJ 1 (m), m = 1, • • •, N, separately 

for each i, i=l, •··, N. 

Eliminating 0,(m)'s from (2.17) and (2.18) yields 

Here, let us define 

e, (m) = Uo (A,)~, (m) 

a,(1) =fi(A1)/fo(A1), j=l, ···, q 

d,(1) =U1(A1)/go(A1), l=l, ···, L. 
Then (2.20) can be reduced to the following ARMA (q, L) model 

q L 
TJ;(m) =~a,(1)1J1(m-1) +e,(m) + ~d,(1)e,(m-l) 

J=I 1=1 

where e1 (m) is a white noise with the variance 

a: (1) = (go (A;)) 2al (1). 

(2.20) 

(2.21a) 

(2.21b) 

(2.21c) 

(2.22) 

(2.23) 

We observe that (2.22) is a set of N nearly uncorrelated ARMA models for the blur­

red image, where a; (i) and d, (i) are the unknown parameters to be estimated. Since it 

is assumed that the coefficients CIJ are symmetric in j, we see from (2.7c) that g, (A;)= 
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UL-1(A1), l=O, 1, ... , [(L-1)/2]. Thus it follows from (2.21c) that the MA coefficients 

d,(t) are symmetric in/, namely, d,(t) =dL-1(t), l=O, 1, •··, [(L-1)/2], and do(t) =l. 

The objective of present paper is to develop a method of identifying the unknown 

paremeters ao, a~ and c,1 from the observations y (n, m). To this end, we have to iden­

tify the ARMA parameters of (2.21a) - (2.21c) from the DST image. 

3. Identification of ARMA Model 

In this section, we present a method of identifying the ARMA parameters by ap­

plying the recursive identification algorithm. 

3. 1 Recursive Algorithm5
l 

Consider the parameter identification problem for the ARMA model 

no nc 

y(t) = I:,a,y(t-i) +e(t) + I:.c1e(t-J) 
i=I J=I (3.1) 

where t denotes the time variable, and e (t) is a white noise sequence with zero mean 

and the variance al. The RELS and RML methods are commonly employed for iden­

tifying the parameters of the ARMA model of (3.1). Recently, Friedlande/l has de­

veloped an algorithm that unifies the RELS and the RML methods by expoloiting the 

advantage of both methods. 

Let 

0= [a1, •••, ana, C1, •••, C,.,] T 

<PT (t) = [y(t-1), ... , y(t-n0 ), e(t-1), •··, e(t-n,)] 

Then (3.1) becomes 

y(t) =<PT (t) 0+e(t) 

The recursive algorithm due to Friedlander is summarized as follows: 

RML Algorithm with a Modified Pre.filter: 

Let 

(3.2) 

(3.3) 

(3.4) 

O(t) =[ti1(t), ···, tina(t), C1(t), ···, c,.,(t)F (3.5) 

be the estimate of 0 based on the data y (1), •· •, y (t). Then the parameter estimation 

algorithm is given by 

E(t+l) =y(t+l)-<PT (t+l) ll(t) (3.6) 
- -
O(t+l) =0(t) +P(t+l) q,(t+l)s (t+l) (3.7) 

P(t+l) =P(t) 
p (t) qi (t+ 1) qJT (t+ 1) p (t) 
l+q,T (t+l)P(t) q,(t+l) 

e(t+l) =y(t+l)-<PT (t+l) O(t+l) 

(3.8) 

(3.9) 

where E (t) and e (t) are the a priori and a posterior prediction errors, respectively , and 
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where </J (t) is defined by 

</JT(t)=[y(t-l), ... , y(t-na), e(t-l), ···, e(t-nc)] 

In (3.10), y (t) and e (t) are generated by 

Y (t) = D, (~-1) Y (t), e (t) = D, (~-1) e (t) 

where 

_ nc 

D, (z-1
) = C 1 (K (t) z- 1

) = 1 + '};K (t) 1 c 1 (t) z-1 

/=I 

(3.10) 

(3.11) 

(3.12) 

K(t+l) =J.K(t) + (1-J.), K(0) =0 (3.13) 

and where z-1 is the backward shift operator and). is a constant with O<). < 1. D 

If we set K (t) =0 in (3.12), then D1 (z-1) = 1, so that the above algorithm reduces to 

the RELS method. But if we set K (t) = 1, namely if D1 (z- 1
) = C, (z-1

), then we have 

the RML algorithm. Since K (t) of (3.13) move from O to 1, the above algorithm may 

have the transient property of the RELS and the asymptotic efficiency of the RML. 

3. 2 lnvertibility Condition of ARMA Model 

Now define 

na 
A (z-1

) = 1- '}; akz-k 
k=l 

nc 
C (z-1

) = 1 + '};c1z-1 

/=I 

Then the ARMA model of (3.1) is expressed as 

A (z-1) y (t) = C (z-1) e (t) 

(3.14) 

(3.15) 

(3.16) 

where z-1 is the backward shift operator and we assume that A ( ·) and C ( • ) are cop­

rime. The following conditions must be imposed for the identification of the ARMA 

model of (3.16).1
'
11

) 

(Cl) The e(t) is a Gaussian white noise with a mean zero and the finite variance a;. 

(C2) All the zeros of A (z-1
) lie inside the unit circle. 

(C3) All the zeros of C(z-1
) lie inside the unit circle. 

Condition (C2) guarantees the stationarity of the output y (t), and condition (C3) implies 

that C (z-1
) is invertible, so that the transfer function G (z) = C (z-1

) / A (z- 1
) is of a mini­

mum phase. 

We consider the conditions (Cl) - (C3) for the ARMA model of (2.22). Let na = q, 

nc=L, a;=a;(i) and c,=d,(i). Then the ARMA model of (2.22) is reduced to (3.1) [or 

(3.16)]. Condition (Cl) is clearly satisfied. Also, condition (C2) is satisfied, since the ori­

ginal image field is a sample from a homogeneous random field. But as shown below, 

the invertibility condition (C3) does not hold. As mentioned at the end of Section 2.2, 
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we have c, = Cn,-1, l = 0, 1, ... , [ (n,-1) /2), and Cnc = 1. Thus, the coefficients of the 

polynomial C (z- 1
) of (3.15) are symmetric, so that the reciprocal polynomical C* (z-1

) = 
z-ncc (z) is identical to the original C (z-1

). This implies that if z0 is a zero of the 

polynomial C (z-1
) then the reciprocal Zo

1 is also a zero of C (z-1 
). Therefore, the 

polynomial C (z- 1
) has zeros both inside and outside the unit circle, except for the case 

where all the zeros of C (z-1
) are on the unit circle. Hence, in general, the invertibility 

conditions does not hold for the ARMA model for the blurred image, so that the esti­

mated parameters c, do not converge to the true values. But we can recover the desired 

estimate of C (z- 1
) by exploiting the assumption that its cofficients are symmetric. 

Let G (z) = C (z- 1
) / A (z-1

), and let S,,, (z) be the spectral density of the stationary 

process y(f). Then it follows from (3.16) that 

S,,,(z) =G(z) G(z-1)af, z=exp(iw), -1rs.ws.1r. (3.18) 

By the canonical spectral factorization, we have 

S,,, (z) = s: (z) S;- (z) al (3.19) 

where the canonical factors: (z) is a minimum phase function and S;- (z) = s: (z-1
). 

Therefore, we see that the estimated transfer function from the output observations y (t) 

will be the minimum phase version of the true transfer function G (z) so that the zeros 

of the estimated polynomial C (z) = 1 + 1:7!,c,z-1 coincide with the stable zeros of 

C (z- 1
) C (z). In other words, we can not estimate all-pass components of the transfer 

functions by the algorithm based on the second-order statistics of the given data. 

But since the zeros of C (z-1
) are reciprocal as well as complex conjugate, we see 

that all the zeros of the estimated polynomial C (z-1
) will be multiple except for possi­

ble pairs of zeros on the unit circle as shown in Fig. 1 (a). Therefore by taking a mirror 

image of each one of the multiple zeros of C (z-1
) with respect to the unit circle as 

shown in Fig. 1 (b), we can recover the desired polynomial C (z-1
) = 1 + 1:7!1c1z-1 

• Thus, 

we can uniquely estimate parameters a1 and c, by the above modification of MA para­

meters. 

Im Im 

Re Re 
0 

(a) (b) 

Fig. 1 Location of Zeros. 
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4. Algorithm for Identifying Blur Parameters 

In this section, we derive a new algorithm for identifying the blur parameters by us­

ing the ARMA parameters estimated in the previous section. In this section, it is 

assumed that the orders p, q, t, s of the image and blurred models are known. Although 

not difficult theoretically, the joint identification of AR and MA parameters is not easy 

from our numerical experience. 

Identification Algorithm A 

Step 1 : From the DST image of (2.22), compute the estimates of the MA para­

meters d,(i), l=l, •··,Land a2 ,(i) for each i, i=l, •··, Nd, by the recursive algor­

ithm in Section 3, where Nd< N and is usually taken to be N /2 since the S / N ratio of 

the transformed image 1}; (m) is very small for large i. D 
Step 2: Modify d1 (i) to d1 (i) by reflecting out each one of the multiple zeros of 

D; (z- 1
) so that D; (z-1

) becomes self-reciprocal for each i= 1, •··, Nd. D 
It should be noted that before computing d, (i) we must adjust the parameters d, 

(t) so that D; (z- 1
) has exact multiple zeros. Since we rarely have an exact zero numer­

ically, it is assumed that a multiple zero is located at the midpoint of a pair of the 

nearest zeros whose imaginary parts have the same sign. 

As mentioned in Section 2.2, jj (A1) and g1 (A;) are of the order p and t, respectively, 

so that we have 

(4.1) 

I 

u,(A,) = ~/WAL l=O, ···, L 
k=O (4.2) 

where the coefficients af!> and /3? are connected with the components of the banded 

Toeplitz matrices Ai and C, through (2.15) and (2.16) in Lemma 1. 

From (2.23) and (4.2), it follows that 

I 

~/3k°)At= 
k=O (4.3) 

Define the matrix AN, and the vectors /3 and r as 

1 A1 Ai Ai 

AN,= 
1 A2 A~ A~ 

[Ndx (t+l)] (4.4a) 

1 AN, A1,,, A1, 

[ (t+l) x l] (4.4b) 
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r= al(l) ' al(2) ' ... , 

179 

(4.4c) 

where it may be noted that AN, is a Vandermonde-like matrix. Then, (4.3) can be rewrit­

ten as AN,f3= r. Since it is assumed that the statistical properties of the original image is 

known, al (i) in (4.4c) can be obtained from (2.19) up to a constant a:,. It may be also 

noted that the actual value of a:, is irrelevant, since the PSF coefficients are normalized 

in Step 6. 

Step 3: Compute the least-squares estimate of the parameter vector f3 as 

P= (A1,AN,)-1A1,r. D (4.5) 

Step 4: By using p<01 , k=O, •··, t, we can compute Uo(A;) from (4.2). D 
Step 5: From(2.21c) and (4.2), we have 

I 

g,(A;) = 'i:,{lkn).f=go(A.;)d,(t), i=l, ···, Nd 
k=O (4.6) 

Therefore, by using J, (i), l = 1, •··, L in Step 2 and g0 (A;) in Step 4, we can obtain 

{Pf>, k=O, ···, t, l=O, ···, L} by applying the least-squares method to (4.6). D 
Step 6: Calculate the PSF C;; from the relation of (2.15) in Lemma 1, and normalize 

C11 as 

I S 

'i:, 'i:, cii=l. □ (4.7) 
i=-t J~-s 

This completes the estimation of the PSF confficients C,. After estimating the un­

known parameters by the above algorithum, we can restore the blurred image by using 

the parallel restoration algorithms.8
.9l 

5. Simulation Studies 

We present some simulation results using a synthetic pesudo-random image and the 

Moon image with the size 256 X 256 to show the feasibility of the algorithm of Steps 1 

- 6. We assume that the image obeys the semicausal model of (2.2), and that the image 

has a separable exponential autocovariance function 

Rzz<i, J) =E{x(n, m)x(n+i, m+J)} 

(5.1) 

where a; is the variance of the original image, and a1 and a2 are the vertical and hori­

zontal correlations, respectively. It is shown
7

l that the autocovariance function (5.1) can 

be realized by the semicausal model of (2.1) with P=q= 1, and 

a1 2 a1a2 
a 10 = l+af ao1=a , au= l+af 
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(1-aO (1-ai) 2 

1 2 <1:r 
+a1 

Thus it follows from (2.7a) and (2.7b) that 

Ao=l-a10Q, A1=aiA.o 

(5.2) 

(5.3) 

where I denotes the identity matrix and Q is the tridiagonal matrix defined by (2.12). 

Hence 

lo (A;)= l-a10h /1 (A;) =a?/o(A;) 

where A;'s are the eigenvalues of Q. Also, 

We assume that the PSF is given by 

1 2 3 2 1 

2 3 5 3 2 
1 

(cii) = 74 3 5 10 5 3 

2 3 5 3 2 

1 2 3 2 1 

0.01351 0.02703 0.04054 

0.02703 0.04054 0.06757 

0.04054 0.06757 0.13514 

0.02703 0.04054 0.06757 

0.01351 0.02703 0.04054 

0.02703 0.01351 

0.04054 0.02703 

0.06757 0.04054 

0.04054 0.02703 

0.02703 0.01351 

where t=s=2, L=4. Then the polynomials g1 (A;), l=0, 1, •··, 4 are given by 

1 Uo(A;) =g,(A;) = 74 (1+2A,+An 

1 
U1(A;) =g3(A;) =n(l+3A;+2m 

U2 (A;)= / 4 (4+5A;+3AD 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

Before performing simulations, we have numerically verified that if we are given 

the true values of parameters d1, l=0, 1, ···, 4 of (2.22), then the PSF parameters can be 

restored correctly. This implies that the identification of MA parameters is the crucial 

from the practical point of view. But it is well known that the convergence of the esti-

f MA . l II) mates o parameters 1s very s ow. 

We generate a pseudo-random image by the causal model as 

x(n, m) =a1x(n-l, m) +a2X(n, m-1) -a1a2,X(n-l, m-1) +tii(n, m) (5.8) 

where a1=a2=0.9, and <T~l.0, so that the parameters of the semicausal model of (2.1) 
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are given by a1o=a-1.0=0.4972, ao1 =0.9, an =a-1,1=-0.4475 and a~=0.5525. 
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Figs. 2 and 3 show the original pseudo-random image and the blurred image, respec­

tively. The PSF identified by the algorithm of Section 4 is shown in Table 1. Then we 

restore the blurred image of Fig. 3 by the parallel restoration algorithm.
9

) Table 2 

shows the comparison of the restoration results for the pseudo-random image with the 

Table 1 Result of Identification 

0.01016 0.02600 0.03366 0.02600 0.01016 
0.02287 0.04707 0.06244 0.04707 0.02287 
0.04831 0.05083 0.18513 0.05083 0.04831 
0.02287 0.04707 0.06244 0.04707 0.02287 
0.01016 0.02600 0.03366 0.02600 0.01016 

Table 2 Result of Restoration for Pseudo-Random Image 

True PSF Estimated PSF 

e. 2.7463 

e, 1.4866 1.5125 

1JsidB) 2.69 2.62 

known blurred parameters and with the estimated parameters, where es and eA denote 

the mean square error before and after restoration, respectively, and where TJBA, the im­

provement in SNR, is defined by 

Table 3 Result of Restoration for Moon Image 

True PSF Estimated PSF 

es 57.239 

e, 37 .124 37.650 

7JsidB) 1.88 1.82 

TJsA = l0log10 :: (dB) (5.9) 

We also show the restoration result for the Moon image in Table 3. The restoration is 

performed with the PSF of Table 1 estimated from the pesudo-random image. We con­

sider the pseudo-random image as a test image from which we can obtain the character-
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Fig. 2 Original Pseudo-Random 

Image. 

Fig. 4 Original Moon Image. 

Fig. 6 Restored Moon Image. 

Fig. 3 Blurred Pseudo-Random 

Image. 

Fig. 5 Blurred Moon Image. 
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istic of our imaging system. We observe from Tables 2 and 3 that there is little differ­

ence in the improvement in SNR between the two restorations. Also, Figs. 4 - 6 show 

the original, blurred and restored Moon images, respectively. There are little noticeable 

distinctions in the visibility between the original image of Fig. 4 and the restored image 

of Fig. 6. 

6 . An Extension 

In Section 4, we developed a method of identifying MA parameters assuming that 

the AR parameters are known a priori. Here, we present an extension of the identifica­

tion algorithm to the case where the AR parameters are not known. 

By squaring and expanding (4.3), we have 

21 2 ( :-, 

~TkAt=~ 
M al (t) 

where the coefficients Tk are given by 
k 

~/3}0>/31°.!.;, Osk~t 
1~0 

k-1 

~f31°>f3l°.!.;, t+lsks2t 
;-o 

Also, from (2.19) and (4.1) 

Therefore, (6.1) can be reduced to 

Hence, if we define ANd, /3 and ~ as 

).j1 a; (1) A1 

).~' a; (2) A2 

~21 
AN4 

[ 
a/0> at> _ a}m] r /3= To, Tt, ... , Tu, --

2
, --2 • ... , 

<Jw <Jw (J~ 

a; (1) J.f 
a; (2) J.f 

[ (2t+p+ 1) X 1] 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5a) 

(6.5b) 

(6.5c) 
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Thus, (6.4) is written as ANdf3=f 

Steps in Section 4 should be modified as follows. 

Identification Algorithm B 

Step 1 : From the DST image of (2.22), compute the estimates of the ARMA para-

meters ii (t), i= 1, ···, q, d, (t), l=l, ···, Land fr e (t) for each i, i= 1, ···, Nd, by the re­

cursive algorithm in Section 3. D 
Step 2 : Sarne as Step 2 of Algorithm A. D 
Step 3: Compute the least-squares estimate 

#= (Ak,AN,)-1Ak,~. □ (6.6) 

Although the value aJ0
> / a& in (6.5c) is not known, it may tentatively be assumed, 

say, to be unity, so that the i9 obtained in Step 3 is the least-squares estimate of f3 up to 

some constant multiplication. 

Step 4: By using Tk, k = 0, ·· ·, 2t, which are the first 2t+ 1 components of the vec­

tor i9 obtained by (6.6), and the relation of (6.2), we can compute {S<o~ , k = 0, • •·, t} , 

from which we obtain fj (A;) up to a constant multiplication. D 
Step 5 : Sarne as Step 5 of Algorithm A. D 
Step 6: Sarne as Step 6 of Algorithm A. D 

Step 7: By recalculating /31°> from the normalized c,; we obtain the estimate of 

fj(A;). Then, we obtain fr ,(t)by using (6.1) and the estimate fr e(t). D 
Steps 1 - 7 are the modification of Steps 1 - 6 of the algorithm in Section 4. Hereaf­

ter, we derive the algorithm for identifying the AR parameters. 

Step 8: From (6.3), we have 

(6.7) 

to which we can apply the least-squares method to obtain the estimates of the para­

meters {al0>, k = 0, 1, •··, p}, where the estimates of fr., are obtained in Step 7 and 

where ai is tentatively assumed to be unity. D 
Step 9: From the relation of (2.15), we calculate {iioo, ii 10, • • ·, iipo} which are the esti­

mates of the parameters in the first row of the coefficient matrix Ao. Since the diagonal 

components of Ao are unity, the estimate of the first row of Ao is given by 

{1, ~:, ... , t!, o, ... , o}. □ (6.8) 

Step 10: Since the polynomial Jo (A;) is determined by 

1 { -(0) -(O)} iioo ao , •··, ap (6.9) 

it follows from (6.7) that the estimate of ai is given by 
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1 Nd -
if w=N,; '"£.fo (A;) Cll(z). D 

d;=l 

Step 11: From (2.21b) and (6.7), we have 
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(6.10) 

(6.11) 

Then, we can compute {ac;1 , k=Q, ... , p, j= 1, •··, q} similarly to Step 8. D 
Step 12: Compute the estimates of Ah j = 1, • • •, q similarly to Step 9. D 

Remark : We have verified numerically that the above algorithm yields good estimates 

of the PSF parameters as well as the system parameters, provided that accurate esti­

mates of parameters of a set of ARMA models of (2.22) are given. At present, however, 

we have not yet succeeded in obtaining good estimates from both the synthetic and the 

real images of Figs. 2 and 4. 

7. Conclusions 

In this paper, we have developed a new algorithm for identifying the blur para­

meters of the observed image. It is assumed that the original image can be expressed by 

a 2-D semicausal model, and that the PSF of the blur is symmetric. We derive a set of 

nearly uncorrelated ARMA models, which are of a non-minimum phase, by applying the 

DST to the blurred image. Although the MA parameters are not invertible, it is shown 

that the parameters of the non-minimum phase ARMA models can be recovered by ex­

ploiting the fact that the coefficients of MA part are symmetric. We have presented a 

new algorithm for identifying the blur parameters from the estimated MA parameters 

by using the least-squares method. Some numerical results are included to show the 

efficiency of the present algorithm. An extension to the case where both the AR and 

MA parameters are unknown is briefly discussed. 
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