3,801 research outputs found

    First Results From the Large Binocular Telescope: Deep Photometry of New dSphs

    Full text link
    This contribution describes photometry for two Galactic dSphs obtained with the Large Binocular Telescope to a magnitude of ~25.5. Using the Large Binocular Camera, a purpose-built wide-field imager for the LBT, we have examined the structure and star formation histories of two newly-discovered Local Group members, the Hercules dSph and the Leo T dSph/dIrr system. We have constructed a structural map for the Hercules system using three-filter photometry to V ~ 25.5. This is the first deep photometry for this system, and it indicates that Hercules is unusually elongated, possibly indicating distortion due to the Galactic tidal field. We have also derived the first star formation history for the Leo T system, and find that its oldest population of stars (age ~ 13 Gyr) were relatively metal-rich, with [Fe/H] ~ -1.5.Comment: Four pages, two figures. To appear in the proceedings of "Galaxies in the Local Volume", Astrophysics and Space Science, editors B. Koribalski and H. Jerje

    Microzooplankton regulation of surface ocean POC:PON ratios

    No full text
    The elemental composition of particulate organic matter in the surface ocean significantly affects the efficiency of the ocean's store of carbon. Though the elemental composition of primary producers is an important factor, recent observations from the western North Atlantic Ocean revealed that carbon-to-nitrogen ratios (C:N) of phytoplankton were significantly higher than the relatively homeostatic ratio of the total particulate pool (particulate organic carbon:particulate organic nitrogen; POC:PON). Here we use an idealized ecosystem model to show how interactions between primary and secondary producers maintain the mean composition of surface particulates and the difference between primary producers and bulk material. Idealized physiological models of phytoplankton and microzooplankton, constrained by laboratory data, reveal contrasting autotrophic and heterotrophic responses to nitrogen limitation: under nitrogen limitation, phytoplankton accumulate carbon in carbohydrates and lipids while microzooplankton deplete internal C reserves to fuel respiration. Global ecosystem simulations yield hypothetical global distributions of phytoplankton and microzooplankton C:N ratio predicting elevated phytoplankton C:N ratios in the high-light, low-nutrient regions of the ocean despite a lower, homeostatic POC:PON ratio due to respiration of excess carbon in systems subject to top-down control. The model qualitatively captures and provides a simple interpretation for, a global compilation of surface ocean POC:PON data

    An Arbitrary Two-qubit Computation In 23 Elementary Gates

    Get PDF
    Quantum circuits currently constitute a dominant model for quantum computation. Our work addresses the problem of constructing quantum circuits to implement an arbitrary given quantum computation, in the special case of two qubits. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates as possible. Our lower bound for worst-case optimal two-qubit circuits calls for at least 17 gates: 15 one-qubit rotations and 2 CNOTs. To this end, we constructively prove a worst-case upper bound of 23 elementary gates, of which at most 4 (CNOT) entail multi-qubit interactions. Our analysis shows that synthesis algorithms suggested in previous work, although more general, entail much larger quantum circuits than ours in the special case of two qubits. One such algorithm has a worst case of 61 gates of which 18 may be CNOTs. Our techniques rely on the KAK decomposition from Lie theory as well as the polar and spectral (symmetric Shur) matrix decompositions from numerical analysis and operator theory. They are related to the canonical decomposition of a two-qubit gate with respect to the ``magic basis'' of phase-shifted Bell states, published previously. We further extend this decomposition in terms of elementary gates for quantum computation.Comment: 18 pages, 7 figures. Version 2 gives correct credits for the GQC "quantum compiler". Version 3 adds justification for our choice of elementary gates and adds a comparison with classical library-less logic synthesis. It adds acknowledgements and a new reference, adds full details about the 8-gate decomposition of topC-V and stealthily fixes several minor inaccuracies. NOTE: Using a new technique, we recently improved the lower bound to 18 gates and (tada!) found a circuit decomposition that requires 18 gates or less. This work will appear as a separate manuscrip

    Camera trap distance sampling for terrestrial mammal population monitoring: lessons learnt from a UK case study

    Get PDF
    Accurate and precise density estimates are crucial for effective species management and conservation. However, efficient monitoring of mammal densities over large spatial and temporal scales is challenging. In the United Kingdom, published density estimates for many mammals, including species considered to be common, are imprecise. Camera trap distance sampling (CTDS) can estimate densities of multiple species at a time and has been used successfully in a small number of studies. However, CTDS has typically been used over relatively homogeneous landscapes, often over large time scales, making monitoring changes (by repeating surveys) difficult. In this study, we deployed camera traps at 109 sites across an area of 2725 km2 of varied habitat in North-East England, United Kingdom. The 4-month survey generated 51 447 photos of wild mammal species. Data were sufficient for us to use CTDS to estimate the densities of eight mammal species across the whole-survey area and within four specific habitats. Both survey-wide and habitat-specific density estimates largely fell within previously published density ranges and our estimates were amongst the most precise produced for these species to date. Lower precision for some species was typically due to animals being missed by the camera at certain distances, highlighting the need for careful consideration of practical and methodological decisions, such as how high to set cameras and where to left-truncate data. Although CTDS is a promising methodology for determining densities of multiple species from one survey, species-specific decisions are still required and these cannot always be generalized across species types and locations. Taking the United Kingdom as a case study, our study highlights the potential for CTDS to be used on a national scale, although the scale of the task suggests that it would need to be integrated with a citizen science approach

    OWL-POLAR : semantic policies for agent reasoning

    Get PDF
    The original publication is available at www.springerlink.comPostprin

    Molecular diversity within clonal complex 22 methicillin-resistant Staphylococcus aureus encoding Panton–Valentine leukocidin in England and Wales

    Get PDF
    AbstractPanton–Valentine leukocidin (PVL)-positive methicillin-resistant Staphylococcus aureus (MRSA) that are multi-locus sequence type clonal complex 22 (CC22) comprise a significant public health problem in the UK. In the present study we sought to determine the genetic diversity, and the respective patient demographics, among 47 PVL-MRSA with a CC22 pulsotype that occurred sporadically or in clusters in community and healthcare settings in eight of nine geographic regions in England and Wales between January 2005 and September 2007. Patient demographics and disease presentations were typical for PVL-S. aureus infections (mostly skin and soft tissue infections in individuals <40 years old); one patient with community-acquired pneumonia died. Although the isolates were closely genotypically related by spa typing and pulsed field gel electrophoresis, at least two variant groups were suggested. PCR detections demonstrated that the majority of the CC22 PVL-MRSA identified (n = 42; 89%) harboured SCCmecIVc, three had SCCmecIVd, one had SCCmecIV but was non-subtypeable, and one isolate harboured SCCmecV. At least three different PVL-encoding phages were detected: ΩPVL, Ω108PVL and an unidentified icosahedral phage. Agar dilution MIC determinations showed that the CC22 PVL-MRSA identified were typically resistant to gentamicin and trimethoprim (43 of 47 isolates) and ciprofloxacin resistance was also noted in six isolates. In conclusion, the CC22 PVL-MRSA tested were geographically disseminated but highly genetically related. The observed variances in acquired elements (most notably SCCmec and PVL-encoding phages) suggested that CC22 PVL-MRSA in England and Wales have evolved on multiple occasions

    Discrete Gravitational Dimensions

    Get PDF
    We study the physics of a single discrete gravitational extra dimension using the effective field theory for massive gravitons. We first consider a minimal discretization with 4D gravitons on the sites and nearest neighbor hopping terms. At the linear level, 5D continuum physics is recovered correctly, but at the non-linear level the theory becomes highly non-local in the discrete dimension. There is a peculiar UV/IR connection, where the scale of strong interactions at high energies is related to the radius of the dimension. These new effects formally vanish in the limit of zero lattice spacing, but do not do so quickly enough to reproduce the continuum physics consistently in an effective field theory up to the 5D Planck scale. Nevertheless, this model does make sense as an effective theory up to energies parametrically higher than the compactification scale. In order to have a discrete theory that appears local in the continuum limit, the lattice action must have interactions between distant sites. We speculate on the relevance of these observations to the construction of finite discrete theories of gravity in four dimensions.Comment: 5 pages, 4 diagrams. Important typos in some equations corrected; conclusion s unchange

    On the practicality of time-optimal two-qubit Hamiltonian simulation

    Get PDF
    What is the time-optimal way of using a set of control Hamiltonians to obtain a desired interaction? Vidal, Hammerer and Cirac [Phys. Rev. Lett. 88 (2002) 237902] have obtained a set of powerful results characterizing the time-optimal simulation of a two-qubit quantum gate using a fixed interaction Hamiltonian and fast local control over the individual qubits. How practically useful are these results? We prove that there are two-qubit Hamiltonians such that time-optimal simulation requires infinitely many steps of evolution, each infinitesimally small, and thus is physically impractical. A procedure is given to determine which two-qubit Hamiltonians have this property, and we show that almost all Hamiltonians do. Finally, we determine some bounds on the penalty that must be paid in the simulation time if the number of steps is fixed at a finite number, and show that the cost in simulation time is not too great.Comment: 9 pages, 2 figure
    • 

    corecore