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Abstract

Accurate and precise density estimates are crucial for effective species manage-

ment and conservation. However, efficient monitoring of mammal densities

over large spatial and temporal scales is challenging. In the United Kingdom,

published density estimates for many mammals, including species considered to

be common, are imprecise. Camera trap distance sampling (CTDS) can esti-

mate densities of multiple species at a time and has been used successfully in a

small number of studies. However, CTDS has typically been used over relatively

homogeneous landscapes, often over large time scales, making monitoring

changes (by repeating surveys) difficult. In this study, we deployed camera traps

at 109 sites across an area of 2725 km2 of varied habitat in North-East England,

United Kingdom. The 4-month survey generated 51 447 photos of wild mam-

mal species. Data were sufficient for us to use CTDS to estimate the densities

of eight mammal species across the whole-survey area and within four specific

habitats. Both survey-wide and habitat-specific density estimates largely fell

within previously published density ranges and our estimates were amongst the

most precise produced for these species to date. Lower precision for some spe-

cies was typically due to animals being missed by the camera at certain dis-

tances, highlighting the need for careful consideration of practical and

methodological decisions, such as how high to set cameras and where to left-

truncate data. Although CTDS is a promising methodology for determining

densities of multiple species from one survey, species-specific decisions are still

required and these cannot always be generalized across species types and loca-

tions. Taking the United Kingdom as a case study, our study highlights the

potential for CTDS to be used on a national scale, although the scale of the task

suggests that it would need to be integrated with a citizen science approach.

Introduction

Measuring animal density and abundance is important for

monitoring trends in wildlife populations and for develop-

ing effective conservation and management strategies (Fryx-

ell et al., 2014). Yet, developing robust methods and tools to

estimate population densities accurately and precisely over

large spatial and temporal scales are challenging for many

taxa (Morellet et al., 2007). Calculating density estimates

for mammals can be particularly difficult given that many

species are nocturnal and easily disturbed by observers, and

many occur at low densities. Consequently, monitoring

efforts often rely on indirect observations of presence, such

as dung or footprints. These indirect observations can be

converted into measures of animal density if conversion fac-

tors such as rates of production and decay are known; how-

ever, the accuracy and precision of this approach are often

questioned (Kuehl et al., 2007; Yoxon & Yoxon, 2014).
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The extent of the challenge of estimating the abun-

dance of mammal species is evident in published esti-

mates for mammal species in the United Kingdom. For

example, a recent estimate of abundance for one of the

United Kingdom’s most common species, the rabbit

(Oryctolagus cuniculus), spanned two orders of magnitude,

from 2 to 255 million (Croft et al., 2017). This impreci-

sion largely results from a lack of species records overall,

and a lack of habitat-specific density estimates, which

makes it difficult to scale up to a national level. The lack

of data on many mammal species is not unique to the

United Kingdom and academics have highlighted the

need for better monitoring of terrestrial mammals world-

wide, including in Europe (ENETWILD-consortium

et al., 2019; van Strien et al., 2016), Africa (Brashares &

Sam, 2005) and Asia (Singh & Milner-Gulland, 2011). It

is clear that new monitoring approaches are needed that

can be deployed over large areas to generate a substantial

number of records and produce reliable density estimates.

As technologies have developed, camera traps have been

increasingly used as a means of passively monitoring spe-

cies (Rovero & Zimmermann, 2016). Camera traps are

particularly useful for monitoring elusive species and can

gather large quantities of data more quickly than many

more traditional survey methods (Burton et al., 2015).

Methods for abundance estimation with camera traps have

been developed for species in which individuals can be

identified (Head et al., 2013; Silver et al., 2004; Williams

et al., 2017) and for species in which individuals cannot be

identified (Chandler & Royle, 2013; Gilbert et al., 2021;

Howe et al., 2017; Luo et al., 2020; Moeller et al., 2018;

Nakashima et al., 2017; Rowcliffe et al., 2008). Palencia

et al. (2021) showed that three of these methods [random

encounter model (REM), random encounter and staying

time (REST) model and camera trap distance sampling

(CTDS)] could be used to estimate densities consistent

with independent estimates from line transects and drive

counts. Although there were no significant differences

between estimates produced by the methods, Palencia

et al. (2021) suggested that CTDS would be more suitable

for low-density species because the number of records

increases more rapidly than with other methods (which

use only initial contacts as their samples). The potential to

accumulate larger datasets more rapidly would be benefi-

cial for monitoring over large spatial scales, using shorter

repeated surveys to track changes in populations. As with

traditional point transect distance sampling (Buckland

et al., 2001), CTDS typically assumes that detection is cer-

tain at distance zero but accounts for imperfect detection

of animals further away from the camera. CTDS has been

used to estimate densities that are consistent with either

true known densities (Cappelle et al., 2019) or previously

published estimates (Corlatti et al., 2020; Harris

et al., 2020; Howe et al., 2017). CTDS has also been used

to estimate densities of multiple species simultaneously

(Bessone et al., 2020; Cappelle et al., 2021; Palencia

et al., 2021).

In many countries, the level of monitoring is inconsis-

tent among species, resulting in limited data on some

species, even when they are considered common [e.g. rab-

bits in the United Kingdom (Croft et al., 2017) or wild

boar across parts of Europe (ENETWILD-consortium

et al., 2019)]. By gathering data and estimating density

for multiple species at a time, CTDS may help to address

this imbalance, as well as saving time and resources by

removing the need for multiple surveys of different spe-

cies. To date, studies that have used the CTDS method

have been carried out in landscapes with little variation

in habitat and with little human influence (Bessone

et al., 2020; Cappelle et al., 2019, 2021; Corlatti

et al., 2020; Harris et al., 2020; Howe et al., 2017). In

many regions and countries, however, the landscape is

much more varied and includes habitats heavily altered

by humans. The method would need to be reliable and

practical to employ over landscapes such as these if it was

to be used for large-scale monitoring.

In this study, we aim to generate density estimates,

including habitat-specific estimates, for a range of

medium-large terrestrial UK mammal species. We assess

our estimates against previously published density esti-

mates for those species. Finally, taking the United King-

dom as a case study, we discuss the opportunities,

limitations and challenges of using CTDS for large-scale

and long-term species monitoring.

Materials and Methods

Survey area

Data were collected in North-East England. The

2725 km2 study area covered County Durham, plus areas

of Gateshead, Sunderland and Darlington. The region’s

landscape is varied, with mountain, heath and bog habitat

in the west, improved grassland (high productivity grass-

land) in the centre of the region and a variety of habitats

in the east, including arable and urban (Fig. 1; habitat

classes from the Land Cover Map 2015, LCM; Rowland

et al., 2017). The area’s human population is around

1.1 million, with population densities ranging from

0.1 ha�1 in the most rural areas of County Durham to

20.2 ha�1 in urban areas such as Sunderland

(ONS, 2021). The Human Influence Index (HII) ranks

human influence from 0 (no influence) to 64 (maximum

influence) according to nine measures of human presence

(WCS and CIESIN, 2005); average HII was 37 (range 14–
64; WCS and CIESIN, 2005) across our study sites.

718 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Camera trap survey

Within the study area, a grid was defined with 5 km2 spac-

ing and random geographical origin, with camera traps

placed at the coordinates of the centre point of each cell in

the grid. The survey took place over 109 sites (Fig. 1). Fifty

Browning Strike Force BTC-5HDP cameras were rotated

in a random order around these sites between June and

October 2018. Orientation was randomly assigned for each

camera. If cameras could not be placed in the exact pre-

determined location or orientation due to land access, veg-

etation blocking the field of view (FOV) or other reasons,

then we placed them at the nearest suitable point, within

the same habitat and without targeting placement to

increase or decrease detection probability.

Researchers usually recommend setting cameras at the

shoulder height of the target species (Meek et al., 2016) but

this is obviously problematic when surveying multiple species

of varying sizes. We also had issues with cameras being trig-

gered or the FOV being partially or entirely blocked by vege-

tation when set at lower heights. Therefore, cameras were

placed at a height of between 0.7 and 1.0 m from the ground

and angled slightly downward. Cameras were set to ‘rapid fire’

mode, with eight photos taken in quick succession each time

the camera was triggered. The delay between triggers was set

to a minimum of 1 sec and the trigger speed of the camera

was 0.3 sec according to manufacturers (Browning, 2017).

Availability for detection and angle
measurements

CTDS requires an estimate of the availability for detection

(Howe et al., 2017). We estimated the proportion of time

for which each species was available for detection by fit-

ting a circular kernel model to radian time data, using

the R package ‘activity’ (Rowcliffe et al., 2014)

(Appendix S1). This method assumes that, at the daily

peak, 100% of the population was available for detection.

This assumption can be violated by any species but semi-

arboreal species, in particular, will spend a proportion of

their active period out of the view of camera traps. In

our study, therefore, the assumption could have been vio-

lated for grey squirrels which spend a proportion of time

in trees. However, our estimate for the availability of grey

squirrels (0.33) was very similar to published data on the

proportion of time grey squirrels spent on the ground in

Italy (0.35, calculated using radio collars and observa-

tions, and taking a weighted average of the two figures

published for Spring/Summer and Autumn/Winter)

(Wauters et al., 2002). Consequently, we used our calcu-

lated figures for availability in our density estimations but

we acknowledge that this might over-estimate availability

and underestimate density for grey squirrels.

Detection is likely to decrease towards the edges of the

FOV (Rowcliffe et al., 2011). However, if cameras are set

to take long bursts or videos, then moving animals will

still be detected at large angles; for this reason, Howe

et al. (2017) used the full FOV of the camera in their

CTDS density calculations. Despite this, it has been rec-

ommended that angles are measured as well as distances

to check whether the sensitivity of the sensor across

angles is uniform (Howe et al., 2017). These checks could

be particularly important where cameras are set to take

single images (Corlatti et al., 2020) or where there are

unavoidable delays between triggers, such as in our study.

We measured angles to image subjects and used these

Figure 1. Left: location of survey area in the United Kingdom shown in red. Right: Map of 109 sites where camera traps were placed in County

Durham. Habitat data from Land Cover Map 2015 (1 km dominant aggregate class, Rowland et al., 2017). Background map: © OpenStreetMap

contributors, © CARTO licensed under CC BY-SA 2.0.
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data to calculate the effective detection angle (Hofmeester

et al., 2017) (Appendix S1). As the effective detection

angle differed from the FOV angle in almost all cases, we

used this as our angle measurement for estimating den-

sity.

Distance sampling methodology

Howe et al. (2017) recommend defining snapshot

moments to discretize the number of times an animal

could be detected, and suggested values between 0.25 and

3 sec are likely to be useful. Corlatti et al. (2020) sug-

gested using the minimum interval between captures as

the value for the interval between snapshot moments

when cameras are set to take single photos. Although we

set our cameras to record in bursts of eight photos, there

was an unavoidable delay of at least 0.3 sec between pho-

tos within a burst, and 1 sec between triggers (figures

according to manufacturers; Browning, 2017). Therefore,

we wished to set the snapshot interval to the average min-

imum interval between captures. However, as the figures

reported in manufacturer’s handbooks are not always

accurate (Corlatti et al., 2020), we calculated the average

of intervals between photos for periods of time when the

camera was being constantly triggered during set up. We

used this (0.8 sec) as our snapshot moment interval.

During camera set up, reference photos were taken

with distance markers placed at 2-m intervals up to 10 m

along the centre and down the sides of the FOV. Distance

intervals were further decreased to 1-m intervals following

data collection by using the overlaid grid tool in Adobe

Photoshop (for details, see Caravaggi et al., 2016). As pre-

cise distances were more difficult to determine further

away from the camera, animals at distances over 8 m

were assigned to either an 8–10 m or 10+ m category.

We measured distances of animals in all images. Images

were screened and tagged in DigiKam (www.digikam.

org).

As data in the 10+ m category accounted for <5% of

overall data for each species, we right-truncated at 10 m

for all species (Buckland et al., 2001). Distance sampling

methodology assumes that detection is certain at zero dis-

tance; however, in CTDS, this assumption could be vio-

lated by animals passing underneath the camera or

through the FOV before the camera is triggered (Howe

et al., 2017). For each species, we worked on the assump-

tion that detectability was highest in the distance category

with the most captures per unit area and we left-

truncated at the left boundary of that category. Excep-

tions to this rule were made in cases where: (1) data dis-

tribution was determined to be due to the presence of

trails rather than animals being missed by the camera; (2)

left truncation resulted in data being present in fewer

than five distance categories, causing poor model fit and

inaccurate estimates of effective detection distance (re-

quired to calculate density estimates; Hofmeester

et al., 2017); or (3) species showed attraction to the cam-

eras. In all cases where we made exceptions to the left-

truncation rule, sensitivity to left-truncation was checked

by calculating densities at different left-truncation scenar-

ios. In addition, for roe deer that showed attraction to

cameras mostly at night, we calculated density estimates

using daytime-only captures (defined as between sunrise

and sunset). For this, we adjusted the total sampling time

and calculated a measure of availability for detection

using the same method as above, but setting the bounds

of the model to be the sunrise/sunset times of the middle

day of the survey period. We did not left-truncate these

data.

We calculated survey-wide density estimates for species

where >80 photos (and >10 photo sequences) were

obtained. We used the Land Cover Map 2015 (1 km

dominant aggregate habitat class; Rowland et al., 2017) to

assign a habitat to each site where a camera trap was

positioned. Habitat-specific density estimates were calcu-

lated if (after truncation): (1) the species had >80 photos

in the habitat; (2) there were >10 sites in that habitat and

(3) data were present in five or more distance categories.

To calculate density, we followed the methods of Howe

et al. (2017) and used the model selection process pro-

posed by Howe et al. (2019) (Appendix S2). We also

explored the effect on density estimates and confidence

intervals of variance in the effective detection angle and

snapshot moment. All analyses used R version 4.1.2 (R

Core Team, 2021), with final models and density esti-

mates calculated using the ‘Distance’ package (Miller

et al., 2019). We compare our density estimates to those

published by the national mammal society in the United

Kingdom (Mathews et al., 2018), and in a paper by Croft

et al. (2017) who gathered data on mammal occurrence

and abundances from across the United Kingdom and

used a systematic modelling approach to produce national

and habitat-specific density estimates.

Results

We were able to place cameras at the exact random point

at 48/109 sites. Of the cameras which were displaced, the

average displacement from the point was 0.30 km (range

0.02–1.76). Small displacements (<0.1 km) were most

commonly due to moving a camera to place it on a post

or structure (e.g. at the edge of a field). Large displace-

ments (>0.5 km) were mostly due to a lack of access per-

missions. A small number of displacements (5) were due

to points falling on buildings or roads. Displacements

occurred across a range of habitats but, most commonly,

720 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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were in improved grassland. More information on camera

displacements is in Table S1.

Despite efforts to set cameras away from livestock and to

reduce triggers from vegetation, these problems occurred

at 41 sites; cameras were stolen from a further two sites.

Wherever we were able, cameras were redeployed at these

sites either immediately or as soon as possible after the pre-

vious deployment. We included data from all deployments

in our analyses. Cameras at 18 sites were deployed for fewer

than 14 days (range 4–13), owing to interference by live-

stock and/or saturated memory cards, with no possibilities

for further deployments (or the same issue occurring on

multiple deployments). Cameras with shorter deployments

were in the LCM habitat classes: mountain, heath and bog

(5); semi-natural grassland (4); improved grassland (4);

arable (3) and built-up areas and gardens (2).

Overall effort totalled 1785 camera days. In total, the

survey generated 435 024 images and 51 447 photos con-

tained a wild mammal. We focussed our analyses on eight

mammal species for which data were adequate to calcu-

late density estimates at a survey-wide level (Table 1).

The number of sites at which these species were detected

ranged from 14 (badger) to 66 (rabbit). At 15 sites, none

of the eight species were captured. Sites where species

were detected varied between species, but the majority of

captures were in the east of the survey area in grassland/

arable/urban habitats, with fewer captures in the moun-

tain/heath/bog habitats in the west (Fig. 2; Figures S3–
S8). Activity schedules (Fig. 2; Figures S3–S8) and associ-

ated availability for detection (Table 1) were in line with

expectations for the species studied, with strictly noctur-

nal species such as hedgehogs having lower availability for

detection (0.13) than diurnal or crepuscular species such

as brown hare (0.53; Table 1). Effective detection angles

for all species were within the range 0.51–0.60 radians

with the exception of roe deer, the largest of the focal

species, which was 0.77 (the same as the FOV angle deter-

mined by manual testing; Table 1). All effective detection

angles were smaller than the FOV angle in the manufac-

turer’s guide (0.96; Browning, 2017).

We left-truncated at the distance category with the lar-

gest number of captures per unit area for red fox, brown

hare, rabbit, grey squirrel and stoat (Table 1). For three

species (badger, hedgehog and roe deer), following this

rule was not appropriate and we made exceptions

(Appendix S3). For these species, the point of left-

truncation made only a small difference to the badger

density estimate, but large differences for the roe deer

and hedgehog density estimates (Table S2). Roe deer den-

sity estimates for the whole-study area and habitat-

specific estimates using daytime only captures were

slightly lower than estimates calculated with all data but

confidence intervals still overlapped (Tables 1 and 2;

Table S3).

The unadjusted hazard rate model was selected as the

model of best fit for all species (following model selection

criteria in Howe et al., 2019). Density estimates ranged

from 0.22 per km2 for stoat to 101.83 per km2 for rabbit

(Table 1). Coefficients of variation were all between 0.30

and 0.46, except for stoat, which had CV = 0.55

(Table 1). Density estimates were similar to estimates pre-

viously published by Mathews et al. (2018) and Croft

et al. (2017), with almost all of our density estimates (ex-

cept hedgehog and roe deer) falling within their published

ranges and/or vice versa (Table 1). We also explored vari-

ation in the effective detection angle and snapshot

moment and found that, because variance in these mea-

sures was very small (relative to the variance arising from

spatial heterogeneity in captures), the effect of these

sources of variance on density estimates and confidence

intervals was also very small (Table S4).

Across the whole survey, cameras were placed within

seven different habitat classes. Of these, four were repre-

sented at 10 or more sites and habitat-specific densities

could be estimated. Data were adequate to produce at

least one habitat-specific density estimate for each species,

but not all species had sufficient data to support a density

estimate for every habitat (Table 2). We used the same

truncation distances for each species as in the survey-wide

estimates (Table 1), but calculated habitat-specific avail-

ability for detection and effective detection angle mea-

sures (Table S5). The unadjusted hazard rate model was

selected for all estimates, except for roe deer in arable

habitat, for which the unadjusted half-normal model was

selected.

The habitat-specific density estimates produced in our

study largely fall within the ranges predicted for those

habitats by Croft et al. (2017) (Table S5). Habitat-specific

density estimates were often similar to survey-wide den-

sity estimates (i.e. falling within or close to the confidence

Figure 2. Example species distribution maps (A and B), activity schedules (C and D), probability density (E and F) and detection probability curves

(G and H) for red fox (Vulpes; left) and hedgehog (Erinaceus europaeus; right). Species maps show locations of all cameras (black circles) with

locations of captures for the species (blue circles) scaled to the number of captures. Colours on map represent habitat data from Land Cover Map

2015 (1 km dominant aggregate class, Rowland et al., 2017) key for colours can be found in Figure 1. Background map: © OpenStreetMap

contributors licensed under CC BY-SA 2.0. Activity schedules show circular kernel models fitted to radian time data of relative frequency of inde-

pendent captures over the 24 h period. The probability density graphs show the probability density of observed distances and detection probabil-

ity graphs show detection probability as a function of distance from unadjusted hazard-rate point transect models.
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interval range of survey-wide estimates), but with some

notable differences (Table 2). Density estimates calculated

for arable habitat were higher than survey-wide estimates

for all species except hedgehog, for which the arable den-

sity estimate was 10 times lower. For improved grassland,

the density estimate was also much lower than survey-

wide estimates for hedgehog and fox. Badger, brown hare,

grey squirrel and stoat all had higher density estimates in

improved grassland than the survey-wide estimates. For

mountain, heath and bog habitat, there were sufficient

data to estimate density for rabbit only. This density esti-

mate was around a quarter of the survey-wide estimate.

Discussion

We used CTDS to estimate survey-wide and habitat-

specific densities for a range of UK mammal species

across a varied landscape. The study was rapid, relative to

previous studies of multiple species over large spatial

scales, and the lessons learned should have much wider

implications for using CTDS on a large scale for country-

wide mammal monitoring. Here, we discuss our findings

with respect to three issues: (1) the calculated density esti-

mates and how they compare to previous published esti-

mates; (2) practical and methodological issues that need

careful consideration in future and (3) implications of the

study for country-wide mammal monitoring.

Accuracy and precision of density estimates

Five of our eight species had density estimates which fell

within the confidence intervals of the estimates in Math-

ews et al. (2018), and/or vice versa, and all but two of our

density estimates fell within the ranges predicted by Croft

et al. (2017). Our estimates are for North-East England

only and, therefore, some differences to national estimates

are expected. Estimates for three species (hedgehog, roe

deer and stoat) differed considerably from national esti-

mates. For hedgehog, this could be due to the distribu-

tion of data (with few captures at both small and large

distances) causing poor model fit and inaccurate density

estimates. We estimated high densities of roe deer relative

to national estimates; this result is expected because,

although roe deer are widely distributed throughout the

United Kingdom, North-East England (where our study

was based) has a higher abundance than other areas, such

as central and southeast England (Crawley et al., 2020).

For stoats, our density estimate was lower than that of

Mathews et al. (2018), but they noted that their estimate

was unreliable due to a lack of data (and hence no CI

could be produced). Croft et al. (2017) were similarly

unable to produce an estimate for stoat density, because

of this lack of data.

Our study is the first CTDS survey to produce density

estimates for both the whole-survey area and specific

habitats within that area. The ability to produce these

habitat-specific density estimates will be beneficial for

conservation management, and will help to address data

gaps. It is also useful for scaling up density estimates, as

shown by Croft et al. (2017) who used habitat-specific

density estimates to generate UK-wide density estimates.

The confidence intervals surrounding our habitat-specific

estimates are large in some cases (Table 2). However,

considering the lack of data, and the published ranges of

the current best density estimates for UK mammal spe-

cies, our estimates are still amongst the most precise pro-

duced for these species to date.

Practical and methodological issues

The ability to use CTDS to generate density estimates

across multiple species and habitats from one survey is

encouraging, suggesting the method could be deployed on

large scales for species monitoring. However, for countries

such as the United Kingdom where the landscape is

heterogenous and includes human-altered habitats, there

are practical limitations to consider. CTDS requires camera

traps to be set at pre-determined (usually systematically

random) points. In most surveys, the potential to deploy all

cameras at pre-selected points is constrained. However, in

our study, 56% of our cameras were displaced, some over

quite large (>1 km) distances. Whilst Howe et al. (2017)

states that small displacements should not bias estimates, if

cameras are displaced to be put on trees or other features

that species (e.g. grey squirrels who spend time in trees)

may be attracted to then those species could be captured

more frequently at smaller distances which has implications

for density estimation. Furthermore, it is unclear what the

effect of larger displacements (usually caused by land access

issues) would be on density estimates. Whilst we made sure

that displaced cameras were still within the same habitat,

previous studies have shown that even within the same

habitat, small-scale factors—such as the presence of log/-

trail features—can result in large differences in capture

rates (Kolowski et al., 2021; Kolowski & Forrester, 2017).

This could be problematic for any large-scale camera trap

survey (particularly in heterogenous landscapes) that use

CTDS or any other method that requires cameras to be set

at pre-determined random locations. Alternative designs

might be required to mitigate against displacements, such

as deploying multiple cameras at each site (Kolowski

et al., 2021). Ultimately, however, covariation between land

access and animal abundance is always likely to constrain

the accuracy of wildlife surveys.

Camera traps surveys are often vulnerable to camera

theft, vegetation triggering cameras and livestock
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damaging cameras (Jumeau et al., 2017; Meek

et al., 2019; Nichols et al., 2017; Swanson et al., 2015).

The heterogenous landscape of our study appeared to

exacerbate this issue, with almost half of our cameras

being affected and ~85% of photos resulting from vegeta-

tion/livestock triggers. This necessitated multiple and, in

some cases, shorter deployments. Whilst multiple deploy-

ments were an inconvenience, we do not believe they

biased density estimates; however, shorter deployments

could influence survey-wide density estimates if shorter

deployments occur more frequently in certain habitats.

Relative to their frequency in the overall survey, improved

grassland and semi-natural grassland had more short

deployments. As some of the density estimates for

improved grassland were different from the survey-wide

estimates, shorter deployments in that habitat could have

biased survey-wide estimates. Future surveys in heteroge-

nous landscapes must factor in ample extra time for rede-

ployments due to practical challenges.

As well as these practical issues, CTDS also presents

methodological challenges. These include the species-

specific decisions that must be made and which need

careful consideration, owing to their strong influence on

density estimates. Perhaps the most challenging factor to

consider is left-truncation. Left-truncation can be prob-

lematic if used inappropriately, because the loss of data

results in extrapolation of the slope of the probability

detection function at distance zero, which is then used to

estimate density. Nevertheless, left-truncation is com-

monly used in CTDS when animals are likely moving

underneath the camera, causing fewer than expected

detections at small distances (Bessone et al., 2020; Cap-

pelle et al., 2019, 2021; Howe et al., 2017; Palencia

et al., 2021). In a large multi-species study, it would be

beneficial to have one method for deciding when and by

how much to left-truncate; hence, we trialled a rule across

all species, left-truncating at the start of the distance cate-

gory with the most captures per unit area surveyed.

Whilst this rule worked for most species, it was inappro-

priate for three species: badgers, for which the lack of

detections at short distances was more likely due to trails

at a larger distance; hedgehogs, for which a lack of spread

in the data caused problems when truncating and roe

deer, which showed attraction to cameras. These cases all

demanded species-specific decisions about left-truncation

distances (Appendix S3).

Other aspects of CTDS that must be considered on a

species-by-species basis include identifying which species

may be reacting to cameras, as this may lead to more

detections than expected at distance zero. Multiple ways

of dealing with this have been proposed, including left-

truncation (Cappelle et al., 2019) and removing images

where animals show a reaction to the camera (Bessone

et al., 2020). In our study, we used left-truncation for roe

deer as this species appeared to be attracted to cameras.

However, because roe deer were mainly reacting to cam-

eras at night (Fig. S2), presumably due to the infrared

flash (Henrich et al., 2020) we also produced estimates

using daytime-only captures (Table S3) as an alternative

to left-truncation. We found similar density estimates and

estimates of variance produced by the two methods (re-

stricting data to daytime captures only, or left truncating

at 1 m), suggesting that either could be appropriate for

dealing with reactivity to cameras. Future studies using

CTDS should consider sample size and causes of reactivity

to determine which method is most appropriate.

Semi-arboreal species pose particular problems for den-

sity estimation. For these, calculating availability for

detection using the method outlined by Rowcliffe

et al. (2014) may be inappropriate. This is because the

assumption of 100% detection at times of peak activity

may be especially problematic for species that spend time

active out of the view of cameras. In our study, the pro-

portion of time available for detection for grey squirrels

(a semi-arboreal species) was highly similar to the figure

calculated by Wauters et al. (2002) for proportion of time

grey squirrels spent on the ground in Italy. Whilst this

provides some reassurance, it would be preferable to have

observational data on time on the ground for the period

and location being studied.

To survey species of varying size, and to reduce

vegetation-induced camera triggers, we set cameras higher

than would be advised for many species in our study

(Meek et al., 2016). Smaller-bodied animals may have

been captured at a larger range of distances and angles if

cameras were deployed at lower heights height (e.g. Mar-

cus Rowcliffe et al., 2011). In turn, this might have obvi-

ated the need for some of the decisions around left-

truncation, whilst rendering valid the full FOV. There is,

of course, a trade-off between ideal placements for ani-

mals of different sizes and this identifies one of the limi-

tations of community-wide (or multispecies) monitoring

by this method. For effective multispecies monitoring

using CTDS, deployments at different heights might be

necessary to survey different components of the commu-

nity.

CTDS for country-wide mammal monitoring

To carry out effective conservation and management for

species, and to meet national obligations for species mon-

itoring (United Nations Environment Programme, 2018),

large-scale monitoring in many countries needs to be

improved. However, monitoring on a national level is

inherently costly and approaches need to be cost-effective

and practical to employ. CTDS offers a way to monitor
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multiple species concurrently, over large spatial scales,

and uses a methodology (distance sampling) benefitting

from existing resources and software. As highlighted by

Schaus et al. (2020), the start-up cost of any camera trap-

ping survey is high; however, cameras can be rotated

around sites to reduce costs and can be used in repeated

surveys for many years. CTDS is also less demanding of

time than many other methods (e.g. line transects); our

study was conducted over a large area, and calculated

density estimates for multiple species, but was conducted

by a single researcher. CTDS thus offers a promising solu-

tion to improve terrestrial mammal monitoring efforts in

the United Kingdom and other countries.

There are multiple ways CTDS could be deployed on a

national scale. If it would be beneficial to obtain regional

densities (perhaps for local species management purposes)

then setting up a grid of cameras across the country at

the same resolution as in our study (5 km2) might be

most appropriate. Alternatively, it might be beneficial to

have a stratified sampling approach to obtain habitat-

specific density estimates, including for rare but impor-

tant habitats. Either way, in order to achieve such large-

scale monitoring, it is likely that support from citizen sci-

entists would be required. Citizen scientists play a large

and important role in ecological data collection in many

countries, including the United Kingdom (Pocock

et al., 2015). Citizen science projects already enlist volun-

teers to deploy camera traps (Hsing et al., 2018; Lasky

et al., 2021; Locke et al., 2019; McShea et al., 2016). Such

projects could collect data appropriate for CTDS by allo-

cating sites to participants and training them to follow

the methodology to calibrate cameras. Although the

expertise of citizen scientists is sometimes questioned

(Kosmala et al., 2016), many projects exist that require

citizen scientists to follow strict protocols; for example,

the UK’s Breeding Bird Survey run by the British Trust

for Ornithology (Harris et al., 2021). Importantly, we

note that accurate hedgehog densities using the Random

Encounter Model were estimated with data collected by

citizen scientists who deployed camera traps following a

calibration methodology similar to that in CTDS (Schaus

et al., 2020).

Conclusion

Despite the methodological and practical limitations we

discuss, CTDS provides a promising method to achieve

large-scale monitoring for many species. Further investi-

gation of certain aspects of the methodology (such as left-

truncation) is needed, and a ‘one size fits all’ approach

for multiple species at a time may not be possible, espe-

cially for smaller species. However, we show that with

careful consideration of these factors, realistic density

estimates can be calculated for multiple species, including

species for which density measures have previously pro-

ven difficult to obtain. The United Kingdom is one case

study of where the lack of data on wild mammal species

highlights the need for improved species monitoring on a

national scale. Employing CTDS on a national scale for

species monitoring would be inherently costly, but costs

could be reduced by enlisting existing citizen science net-

works and projects. The benefits of employing such a

scheme would be significant, given the increasing anthro-

pogenic pressures facing species worldwide and the cur-

rent gaps in our data and knowledge, which limit our

ability to predict how species will respond.

Acknowledgements

We thank the land-owners for permission to deploy cam-

era traps across our survey area. We also thank R. Ascroft

and A. Kelly for their help with setting up cameras and

students from Newcastle University who assisted with

classifying images. Finally, we thank M. Rowcliffe for

advice regarding R code for analysis. This work is sup-

ported by a NERC IAPETUS DTP PhD scholarship for S.

Mason.

References

Bessone, M., K€uhl, H.S., Hohmann, G., Herbinger, I.,

N’Goran, K.P., Asanzi, P. et al. (2020) Drawn out of the

shadows: surveying secretive forest species with camera trap

distance sampling. Journal of Applied Ecology, 57, 963–974.
https://doi.org/10.1111/1365-2664.13602

Brashares, J.S. & Sam, M.K. (2005) How much is enough?

Estimating the minimum sampling required for effective

monitoring of African reserves. Biodiversity and

Conservation, 14, 2709–2722. https://doi.org/10.1007/s10531-

005-8404-z

Browning. (2017) Strike force HD Pro BTC-5HDP instruction

manual. Available from: https://perdixwildlifesupplies.com/

wp-content/uploads/2013/09/Strike-Force-HD-Pro-BTC-

5HDP.pdf [Accessed: 19 February 2022].

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L.,

Borchers, D.L. & Thomas, L. (2001) Introduction to distance

sampling: estimating abundance of biological populations.

Oxford, UK: Oxford University Press.

Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R.,

Fisher, J.T. et al. (2015) REVIEW: wildlife camera trapping:

a review and recommendations for linking surveys to

ecological processes. Journal of Applied Ecology, 52, 675–685.

https://doi.org/10.1111/1365-2664.12432

Cappelle, N., Despr�es-Einspenner, M., Howe, E.J., Boesch, C.

& K€uhl, H.S. (2019) Validating camera trap distance

sampling for chimpanzees. American Journal of Primatology,

81, e22962. https://doi.org/10.1002/ajp.22962

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 727

S. S. Mason et al. Distance Sampling with Camera Traps in the UK

 20563485, 2022, 5, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.272 by T

est, W
iley O

nline L
ibrary on [01/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/1365-2664.13602
https://doi.org/10.1007/s10531-005-8404-z
https://doi.org/10.1007/s10531-005-8404-z
https://perdixwildlifesupplies.com/wp-content/uploads/2013/09/Strike-Force-HD-Pro-BTC-5HDP.pdf
https://perdixwildlifesupplies.com/wp-content/uploads/2013/09/Strike-Force-HD-Pro-BTC-5HDP.pdf
https://perdixwildlifesupplies.com/wp-content/uploads/2013/09/Strike-Force-HD-Pro-BTC-5HDP.pdf
https://doi.org/10.1111/1365-2664.12432
https://doi.org/10.1002/ajp.22962


Cappelle, N., Howe, E.J., Boesch, C. & K€uhl, H.S. (2021)

Estimating animal abundance and effort–precision

relationship with camera trap distance sampling. Ecosphere,

12. https://doi.org/10.1002/ecs2.3299

Caravaggi, A., Zaccaroni, M., Riga, F., Schai-Braun, S.C., Dick,

J.T.A.,Montgomery,W.I. et al. (2016) An invasive-native

mammalian species replacement process captured by camera

trap survey random encounter models.Remote Sensing in Ecology

and Conservation, 2, 45–58. https://doi.org/10.1002/rse2.11

Chandler, R.B. & Royle, J.A. (2013) Spatially explicit models

for inference about density in unmarked or partially marked

populations. The Annals of Applied Statistics, 7, 936–954.
https://doi.org/10.1214/12-AOAS610

Corlatti, L., Sivieri, S., Sudolska, B., Giacomelli, S. & Pedrotti,

L. (2020) A field test of unconventional camera trap

distance sampling to estimate abundance of marmot

populations. Wildlife Biology, 2020. https://doi.org/10.2981/

wlb.00652

Crawley, D., Coomber, F., Kubasiewicz, L., Harrower, C., Evans,

P., Waggitt, J. et al. (2020) Atlas of the mammals of Great

Britain and Northern Ireland. Exeter, UK: Pelagic Publishing.

Croft, S., Chauvenet, A.L.M. & Smith, G.C. (2017) A

systematic approach to estimate the distribution and total

abundance of British mammals. PLoS One, 12, e0176339.

https://doi.org/10.1371/journal.pone.0176339

ENETWILD-consortium, Acevedo, P., Croft, S., Smith, G. &

Vicente, J. (2019) ENETwild modelling of wild boar

distribution and abundance: initial model output based on

hunting data and update of occurrence-based models. EFSA

Supporting Publications, 16. https://doi.org/10.2903/sp.efsa.

2019.EN-1629

Fryxell, J.M., Sinclair, A.R.E. & Graeme, C. (2014) Wildlife

ecology, conservation, and management, 3rd edition.

Chichester, West Sussex: John Wiley & Sons, Incorporated.

Gilbert, N.A., Clare, J.D.J., Stenglein, J.L. & Zuckerberg, B.

(2021) Abundance estimation of unmarked animals based

on camera-trap data. Conservation Biology, 35, 88–100.

https://doi.org/10.1111/cobi.13517

Harris, G.M., Butler, M.J., Stewart, D.R., Rominger, E.M. &

Ruhl, C.Q. (2020) Accurate population estimation of

Caprinae using camera traps and distance sampling.

Scientific Reports, 10, 17729. https://doi.org/10.1038/s41598-

020-73893-5

Harris, S.J., Massimino, D., Balmer, D.E., Eaton, M.A., Noble,

D.G., Pearce-Higgins, J.W. et al. (2021) The breeding bird

survey 2020. (no. BTO research report 736). British Trust

for Ornithology, Thetford.

Head, J.S., Boesch, C., Robbins, M.M., Rabanal, L.I., Makaga,

L. & K€uhl, H.S. (2013) Effective sociodemographic

population assessment of elusive species in ecology and

conservation management. Ecology and Evolution, 3, 2903–
2916. https://doi.org/10.1002/ece3.670

Henrich, M., Niederlechner, S., Kr€oschel, M., Thoma, S.,

Dormann, C.F., Hartig, F. et al. (2020) The influence of

camera trap flash type on the behavioural reactions and

trapping rates of red deer and roe deer. Remote Sensing in

Ecology and Conservation, 6, 399–410. https://doi.org/10.
1002/rse2.150

Hofmeester, T.R., Rowcliffe, J.M. & Jansen, P.A. (2017) A

simple method for estimating the effective detection distance

of camera traps. Remote Sensing in Ecology and Conservation,

3, 81–89. https://doi.org/10.1002/rse2.25
Howe, E.J., Buckland, S.T., Despr�es-Einspenner, M. & K€uhl,

H.S. (2019) Model selection with overdispersed distance

sampling data. Methods in Ecology and Evolution, 10, 38–47.

https://doi.org/10.1111/2041-210X.13082

Howe, E.J., Buckland, S.T., Despr�es-Einspenner, M.-L. & K€uhl,

H.S. (2017) Distance sampling with camera traps. Methods

in Ecology and Evolution, 8, 1558–1565. https://doi.org/10.

1111/2041-210X.12790

Hsing, P., Bradley, S., Kent, V.T., Hill, R.A., Smith, G.C.,

Whittingham, M.J. et al. (2018) Economical crowdsourcing for

camera trap image classification. Remote Sensing in Ecology and

Conservation, 4, 361–374. https://doi.org/10.1002/rse2.84
Jumeau, J., Petrod, L. & Handrich, Y. (2017) A comparison of

camera trap and permanent recording video camera

efficiency in wildlife underpasses. Ecology and Evolution, 7,

7399–7407. https://doi.org/10.1002/ece3.3149
Kolowski, J.M. & Forrester, T.D. (2017) Camera trap

placement and the potential for bias due to trails and other

features. PLoS One, 12, e0186679. https://doi.org/10.1371/

journal.pone.0186679

Kolowski, J.M., Oley, J. & McShea, W.J. (2021) High-density

camera trap grid reveals lack of consistency in detection and

capture rates across space and time. Ecosphere, 12. https://

doi.org/10.1002/ecs2.3350

Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. (2016)

Assessing data quality in citizen science. Frontiers in Ecology and

the Environment, 14, 551–560. https://doi.org/10.1002/fee.1436

Kuehl, H.S., Todd, A., Boesch, C. & Walsh, P.D. (2007)

Manipulating decay time for efficient large-mammal density

estimation: gorillas and dung height. Ecological Applications,

17, 2403–2414. https://doi.org/10.1890/06-0934.1
Lasky, M., Parsons, A., Schuttler, S., Mash, A., Larson, L.,

Norton, B. et al. (2021) Candid critters: challenges and

solutions in a large-scale citizen science camera trap project.

Citizen Science: Theory and Practice, 6, 4. https://doi.org/10.

5334/cstp.343

Locke, C.M., Anhalt-Depies, C.M., Frett, S., Stenglein, J.L.,

Cameron, S., Malleshappa, V. et al. (2019) Managing a large

citizen science project to monitor wildlife. Wildlife Society

Bulletin, 43, 4–10. https://doi.org/10.1002/wsb.943

Luo, G., Wei, W., Dai, Q. & Ran, J. (2020) Density estimation

of unmarked populations using camera traps in

heterogeneous space. Wildlife Society Bulletin, 44, 173–181.
https://doi.org/10.1002/wsb.1060

Mathews, F., Kubasiewicz, L., Gurnell, J., Harrower, C.,

McDonald, R. & Shore, R. (2018) A review of the

728 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Distance Sampling with Camera Traps in the UK S. S. Mason et al.

 20563485, 2022, 5, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.272 by T

est, W
iley O

nline L
ibrary on [01/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/ecs2.3299
https://doi.org/10.1002/rse2.11
https://doi.org/10.1214/12-AOAS610
https://doi.org/10.2981/wlb.00652
https://doi.org/10.2981/wlb.00652
https://doi.org/10.1371/journal.pone.0176339
https://doi.org/10.2903/sp.efsa.2019.EN-1629
https://doi.org/10.2903/sp.efsa.2019.EN-1629
https://doi.org/10.1111/cobi.13517
https://doi.org/10.1038/s41598-020-73893-5
https://doi.org/10.1038/s41598-020-73893-5
https://doi.org/10.1002/ece3.670
https://doi.org/10.1002/rse2.150
https://doi.org/10.1002/rse2.150
https://doi.org/10.1002/rse2.25
https://doi.org/10.1111/2041-210X.13082
https://doi.org/10.1111/2041-210X.12790
https://doi.org/10.1111/2041-210X.12790
https://doi.org/10.1002/rse2.84
https://doi.org/10.1002/ece3.3149
https://doi.org/10.1371/journal.pone.0186679
https://doi.org/10.1371/journal.pone.0186679
https://doi.org/10.1002/ecs2.3350
https://doi.org/10.1002/ecs2.3350
https://doi.org/10.1002/fee.1436
https://doi.org/10.1890/06-0934.1
https://doi.org/10.5334/cstp.343
https://doi.org/10.5334/cstp.343
https://doi.org/10.1002/wsb.943
https://doi.org/10.1002/wsb.1060


population and conservation status of British mammals:

technical summary. A report by the Mammal Society under

contract to Natural England, Natural Resources Wales and

Scottish Natural Heritage.

McShea, W.J., Forrester, T., Costello, R., He, Z. & Kays, R.

(2016) Volunteer-run cameras as distributed sensors for

macrosystem mammal research. Landscape Ecology, 31, 55–

66. https://doi.org/10.1007/s10980-015-0262-9

Meek, P.D., Ballard, G.A. & Falzon, G. (2016) The higher you

go the less you will know: placing camera traps high to

avoid theft will affect detection. Remote Sensing in Ecology

and Conservation, 2, 204–211. https://doi.org/10.1002/rse2.28
Meek, P.D., Ballard, G.A., Sparkes, J., Robinson, M., Nesbitt,

B. & Fleming, P.J.S. (2019) Camera trap theft and

vandalism: occurrence, cost, prevention and implications for

wildlife research and management. Remote Sensing in Ecology

and Conservation, 5, 160–168. https://doi.org/10.1002/rse2.96

Miller, D.L., Rexstad, E., Thomas, L., Marshall, L. & Laake, J.L.

(2019) Distance sampling in R. Journal of Statistical

Software, 89. https://doi.org/10.18637/jss.v089.i01

Moeller, A.K., Lukacs, P.M. & Horne, J.S. (2018) Three novel

methods to estimate abundance of unmarked animals using

remote cameras. Ecosphere, 9, e02331. https://doi.org/10.

1002/ecs2.2331

Morellet, N., Gaillard, J.-M., Hewison, A.J.M., Ballon, P.,

Boscardin, Y., Duncan, P. et al. (2007) Indicators of

ecological change: new tools for managing populations of

large herbivores: ecological indicators for large herbivore

management. Journal of Applied Ecology, 44, 634–643.

https://doi.org/10.1111/j.1365-2664.2007.01307.x

Nakashima, Y., Fukasawa, K. & Samejima, H. (2017)

Estimating animal density without individual recognition

using information derivable exclusively from camera traps.

Journal of Applied Ecology. https://doi.org/10.1111/1365-

2664.13059

Nichols, M., Glen, A., Garvey, P. & Ross, J. (2017) A

comparison of horizontal versus vertical camera placement

to detect feral cats and mustelids. New Zealand Journal of

Ecology, 41. https://doi.org/10.20417/nzjecol.41.11

Office for National Statistics (ONS). (2021) Estimates of the

population for the UK, England and Wales, Scotland and

Northern Ireland.

Palencia, P., Rowcliffe, J.M., Vicente, J. & Acevedo, P. (2021)

Assessing the camera trap methodologies used to estimate

density of unmarked populations. Journal of Applied Ecology,

58, 1583–1592. https://doi.org/10.1111/1365-2664.13913

Pocock, M.J.O., Roy, H.E., Preston, C.D. & Roy, D.B. (2015)

The Biological Records Centre: a pioneer of citizen science.

Biological Journal of the Linnean Society, 115, 475–493.
https://doi.org/10.1111/bij.12548

R Core Team. (2021) R: a language and environment for

statistical computing. Vienna, Austria: R Foundation for

Statistical Computing. Available from: https://www.R-

project.org/ [Accessed: 12 February 2022].

Rovero, F. & Zimmermann, F. (2016) Camera trapping for

wildlife research. Exeter, UK: Pelagic Publishing Ltd.

Rowcliffe, J.M., Carbone, C., Jansen, P.A., Kays, R. &

Kranstauber, B. (2011) Quantifying the sensitivity of camera

traps: an adapted distance sampling approach: quantifying

camera trap sensitivity. Methods in Ecology and Evolution, 2,

464–476. https://doi.org/10.1111/j.2041-210X.2011.00094.x

Rowcliffe, J.M., Field, J., Turvey, S.T. & Carbone, C. (2008)

Estimating animal density using camera traps without the

need for individual recognition. Journal of Applied Ecology, 45,

1228–1236. https://doi.org/10.1111/j.1365-2664.2008.01473.x

Rowcliffe, J.M., Kays, R., Kranstauber, B., Carbone, C. &

Jansen, P.A. (2014) Quantifying levels of animal activity

using camera trap data. Methods in Ecology and Evolution, 5,

1170–1179. https://doi.org/10.1111/2041-210X.12278

Rowland, C.S., Morton, R.D., Carrasco, L., McShane, G.,

O’Neil, A.W. & Wood, C.M. (2017) Land cover map 2015

(1km dominant aggregate class, GB) [Data set]. NERC

Environmental Information Data Centre. https://doi.org/10.

5285/711C8DC1-0F4E-42AD-A703-8B5D19C92247

Schaus, J., Uzal, A., Gentle, L.K., Baker, P.J., Bearman-Brown,

L., Bullion, S. et al. (2020) Application of the random

encounter model in citizen science projects to monitor

animal densities. Remote Sensing in Ecology and

Conservation, 6, 514–528. https://doi.org/10.1002/rse2.153

Silver, S.C., Ostro, L.E.T., Marsh, L.K., Maffei, L., Noss, A.J.,

Kelly, M.J. et al. (2004) The use of camera traps for

estimating jaguar Panthera onca abundance and density

using capture/recapture analysis. Oryx, 38. https://doi.org/

10.1017/S0030605304000286

Singh, N.J. & Milner-Gulland, E.J. (2011) Monitoring

ungulates in Central Asia: current constraints and future

potential. Oryx, 45, 38–49. https://doi.org/10.1017/

S0030605310000839

Swanson, A., Kosmala, M., Lintott, C., Simpson, R., Smith, A.

& Packer, C. (2015) Snapshot Serengeti, high-frequency

annotated camera trap images of 40 mammalian species in

an African savanna. Scientific Data, 2, 150026. https://doi.

org/10.1038/sdata.2015.26

United Nations Environment Programme. (2018) Law and

national biodiversity strategies and action plans. Nairobi, Kenya.

van Strien, A.J., Meyling, A.W.G., Herder, J.E., Hollander, H.,

Kalkman, V.J., Poot, M.J.M. et al. (2016) Modest recovery

of biodiversity in a western European country: the living

planet index for The Netherlands. Biological Conservation,

200, 44–50. https://doi.org/10.1016/j.biocon.2016.05.031

Wauters, L., Gurnell, J., Martinoli, A. & Tosi, G. (2002)

Interspecific competition between native Eurasian red

squirrels and alien grey squirrels: does resource partitioning

occur? Behavioral Ecology and Sociobiology, 52, 332–341.

https://doi.org/10.1007/s00265-002-0516-9

Wildlife Conservation Society-WCS, Center For International

Earth Science Information Network-CIESIN-Columbia

University. (2005) Last of the wild project, version 2, 2005

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 729

S. S. Mason et al. Distance Sampling with Camera Traps in the UK

 20563485, 2022, 5, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.272 by T

est, W
iley O

nline L
ibrary on [01/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/s10980-015-0262-9
https://doi.org/10.1002/rse2.28
https://doi.org/10.1002/rse2.96
https://doi.org/10.18637/jss.v089.i01
https://doi.org/10.1002/ecs2.2331
https://doi.org/10.1002/ecs2.2331
https://doi.org/10.1111/j.1365-2664.2007.01307.x
https://doi.org/10.1111/1365-2664.13059
https://doi.org/10.1111/1365-2664.13059
https://doi.org/10.20417/nzjecol.41.11
https://doi.org/10.1111/1365-2664.13913
https://doi.org/10.1111/bij.12548
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1111/j.2041-210X.2011.00094.x
https://doi.org/10.1111/j.1365-2664.2008.01473.x
https://doi.org/10.1111/2041-210X.12278
https://doi.org/10.5285/711C8DC1-0F4E-42AD-A703-8B5D19C92247
https://doi.org/10.5285/711C8DC1-0F4E-42AD-A703-8B5D19C92247
https://doi.org/10.1002/rse2.153
https://doi.org/10.1017/S0030605304000286
https://doi.org/10.1017/S0030605304000286
https://doi.org/10.1017/S0030605310000839
https://doi.org/10.1017/S0030605310000839
https://doi.org/10.1038/sdata.2015.26
https://doi.org/10.1038/sdata.2015.26
https://doi.org/10.1016/j.biocon.2016.05.031
https://doi.org/10.1007/s00265-002-0516-9


(LWP-2): global Human Influence Index (HII) dataset

(geographic). https://doi.org/10.7927/H4BP00QC

Williams, S.T., Williams, K.S., Lewis, B.P. & Hill, R.A. (2017)

Population dynamics and threats to an apex predator

outside protected areas: implications for carnivore

management. Royal Society Open Science, 4, 161090. https://

doi.org/10.1098/rsos.161090

Yoxon, P. & Yoxon, K. (2014) Estimating otter numbers using

spraints: is it possible? Journal of Marine Biology, 2014, 1–6.

https://doi.org/10.1155/2014/430683

Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Appendix S1. Further details on how availability for

detection, effective detection angle and the snapshot

moment interval were calculated.

Appendix S2. Further details on density calculation using

camera trap distance sampling and the model selection

process.

Appendix S3. Further details and explanations of left

truncation decisions for different species.

Figure S1. Detection probability as a function of distance

(top) and probability density of observed distances (bot-

tom) for hedgehog (Erinaceus europaeus) under two dif-

ferent left-truncation scenarios.

Figure S2. Percentage of captures in each distance cate-

gory for roe deer (Capreolus capreolus) in the daytime

(left) and the night-time (right).

Figure S3. Species distribution map (top-left), activity

schedule (top-right), probability density (bottom-left) and

detection probability (bottom-right) graphs for roe deer

(Capreolus capreolus).

Figure S4. Species distribution map (top-left), activity

schedule (top-right), probability density (bottom-left) and

detection probability (bottom-right) graphs for badger

(Meles meles).

Figure S5. Species distribution map (top-left), activity

schedule (top-right), probabilitydensity (bottom-left) and

detection probability (bottom-right) graphs for brown-

hare (Lepus europaeus).

Figure S6. Species distribution map (top-left), activity

schedule (top-right), probability density (bottom-left) and

detection probability (bottom-right) graphs for rabbit

(Oryctolagus cuniculus).

Figure S7. Species distribution map (top-left), activity

schedule (top-right), probability density (bottom-left) and

detection probability (bottom-right) graphs for grey

squirrel (Sciurus carolinensis).

Figure S8. Species distribution map (top-left), activity

schedule (top-right), probability density (bottom-left) and

detection probability (bottom-right) graphs for stoat

(Mustela erminea).

Table S1. Details of camera trap placements including

information on which camera traps were displaced from

the pre-determined random point and the reason for the

displacement.

Table S2. Densities [95% CI] calculated across the whole-

study area under different left-truncation scenarios for

species where truncation decisions were questioned due

to: data not being consistent with understanding of spe-

cies (badger); poor model fit (hedgehog); or animals

being attracted to cameras (roe deer).

Table S3. Density estimates [95% CI] and other species/

habitat-specific information for roe deer using daytime

capture data only.

Table S4. Densities [95% CI] calculated across the whole-

study area including estimates presented in the paper (s-

tandard) and lower and upper estimates which incorpo-

rate variation from effective detection angle and snapshot

moment calculations.

Table S5. Habitat-specific density estimates [95% CI] and

other species/habitat-specific information.
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