10 research outputs found

    Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance

    Get PDF
    Enzymes are critically important in the transportation, metabolism, and clearance of most therapeutic drugs used in clinical practice today. Many of these enzymes have significant genetic polymorphisms that affect the enzyme's rate kinetics. Regarding drug metabolism, specific polymorphisms to the cytochrome (CYP) P450 enzyme family are linked to phenotypes that describe reaction rates as "ultra", "intermediate", and "poor," as referenced to "extensive" metabolizers that are assigned to wildtype individuals. Activity scores is an alternate designation that provides more genotype-to-phenotype resolution. Understanding the relative change in enzyme activities or rate of clearance of specific drugs relative to an individual's genotypes is an important component in the interpretation of pharmacogenomic data for personalized medicine. Currently, the most relevant drug metabolizing enzymes are CYP 2D6, CYP 2C9, CYP 2C19, thiopurine methyltransferase (TPMT) and UDP-glucuronosyltransferase (UGT). Each of these enzymes is reactive to a host of different drug substrates. Pharmacogenomic tests that are in routine clinical practice include CYP 2C19 for clopidogrel, TPMT for thiopurine drugs, and UDP-1A1 for irinotecan. Other tests where there is considerable data but have not been widely implemented includes CYP 2C9 for warfarin, CYP 2D6 for tamoxifen and codeine, and CYP 2C19 for the proton pump inhibitors

    Coumarin anticoagulants and co-trimoxazole: avoid the combination rather than manage the interaction

    Get PDF
    OBJECTIVE: The objective of our study was to examine the management of the interaction between acenocoumarol or phenprocoumon and several antibiotics by anticoagulation clinics and to compare the consequences of this interaction on users of co-trimoxazole with those for users of other antibiotics. METHODS: A follow-up study was conducted at four anticoagulation clinics in The Netherlands. Data on measurements of the International Normalised Ratio (INR), application of a preventive dose reduction (PDR) of the coumarin anticoagulant, fever and time within or outside the therapeutic INR range were collected. RESULTS: The study cohort consisted of 326 subjects. A PDR was given more often to users of co-trimoxazole PDR than to users of other antibiotics. The PDR in co-trimoxazole users resulted in a significantly reduced risk of both moderate overanticoagulation (INR >4.5) and severe overanticoagulation (INR >6.0) compared with no PDR, with odds ratios (ORs) of 0.06 [95% confidence interval (CI): 0.01-0.51] and 0.09 (95% CI: 0.01-0.92), respectively. In co-trimoxazole users without PDR, the risk of overanticoagulation was significantly increased compared with users of other antibiotics. All co-trimoxazole users spent significantly more time under the therapeutic INR range during the first 6 weeks after the course than users of other antibiotics. CONCLUSION: PDR is effective in preventing overanticoagulation in co-trimoxazole users, but results in a significantly prolonged period of underanticoagulation after the course. Avoidance of concomitant use of co-trimoxazole with acenocoumarol or phenprocoumon seems to be a safer approach than management of the interaction between these drugs
    corecore