1,014 research outputs found

    Bone-protective effects of bioactive fractions and ingredients in Sambucus williamsii HANCE

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Surface modification, strengthening effect and electrochemical comparative study of Zn-Al2O3-CeO3 and Zn-TiO2-CeO3 coating on mild steel

    Get PDF
    Surface enhancement of engineering materials is necessary for preventing service failure and corrosion attacks industrially. The surface modification, strengthening effect and electrochemical comparative study of Zn-Al2O3-CeO3 and Zn-TiO2-CeO3 coating on mild steel was investigated. Deposition was performed to obtain a better surface adherent coating using the electrodeposition technique. Co-deposition of mild steel resulted into surface modification attributes to the complex alloys that were developed. Films of mild steel were electrodeposited on zinc electrodes using the chloride bath solutions. The effect of deposition potentials was systematically studied using a focus ion beam scanning electron microscope (FIB-SEM) and an atomic force microscope (AFM) to observe the surface morphology, topography and the surface adherent properties of the coatings. The elemental composition and the phases evolved in composite coatings were measured by means of the energy dispersed spectrometer (EDS). The microhardness measurements and corrosion behaviours of the deposits were investigated. Weight loss measurement was conducted on the plated samples to observe the rate of corrosion and it was observed that there was severe corrosion on the controlled sample in comparison to the plated samples and that Zn-TiO2-CeO3 resisted more corrosion attacks

    Genetic analysis of the naked trait in panicles of hexaploid oat

    Get PDF
    The aim of this study was to estimate the number of genes that control the naked (hull-less) trait and the mode of expression of this characteristic in panicles of hexaploid white oat. Parents and the segregating population (in the F2 and F3 generations) were evaluated in regard to the presence and distribution of naked grains in panicles of individual oat plants. For each plant, a drawing of the main panicle was developed. From the drawings obtained in the progenies of the F2 population, six distinct phenotypic classes were produced. The expected phenotypic proportion of 3:9:4 (naked:segregating:hulled) was that which best fit by the Chi-square test. In the F3 generation, the results showed agreement with the hypothesis observed in the F2 generation. The naked trait in oat is passed on by two genes and the greatest expression of this trait occurs in the upper third of the panicles. Expression of this trait in oats is not complete, even in homozygous genotypes

    Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC.</p> <p>Results</p> <p>We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides.</p> <p>Conclusions</p> <p>The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at <url>http://bordnerlab.org/RTA/</url>.</p

    The creation of new rotation arc to the rat latissimus dorsi musculo-cutaneous flap with delay procedures

    Get PDF
    BACKGROUND: Latissimus dorsi musculocutaneous flap is one of the most frequently performed reconstructive techniques in surgery. Latissimus dorsi muscle has two arcs of rotation. It is classified as type V muscle. This muscle can be elevated on the thoracodorsal artery to cover large defects in the anterior chest and also, the muscle can be elevated on the segmental vessels to cover midline defects posteriorly. The aim of this study was to create a new arc of rotation on a vertical axis for the muscle and investigate effectiveness of vascular and chemical delays on the latissimus dorsi muscle flap with an inferior pedicle in an experimental rat model. We hypothesized that the latissimus dorsi muscle would be based on inferior pedicle by delay procedures. METHODS: We tested two different types of delay: vascular and combination of vascular and chemical. We also tried to determine how many days of "delay" can elicit beneficial effects of vascular and combination delays in an inferior pedicled latissimus dorsi musculocutaneous flap. To accomplish this, 48 male Sprague-Dawley rats were randomly subjected to vascular or combination delay (vascular and chemical). In addition, one ear of each rat was assigned into a delay procedure and the other ear was used as a control. Results were evaluated macroscopically, and micro-angiography and histological examinations were also performed. As a result, there was a significant difference in viable flap areas between vascular delay alone and control groups (p < 0.05). RESULTS: The higher rate of flap viability was obtained in seven-day vascular delay alone. However, there was no significant difference in the viability between seven-day vascular delay and five-day vascular delay (p < 0.05), so the earliest time when the flap viability could be obtained was at five days. The rate of flap viability was significantly higher in the vascular delay combined with chemical delay than the control group (p < 0.05). CONCLUSION: The combination of vascular and chemical delays increased the rate of viability. Nevertheless, there was no significant difference between vascular delay alone and combination of vascular and chemical delays. Chemical delay did not significantly decrease the delay period. Better histological and microangiographical results were achieved in delay groups compared to control groups. We concluded that the arch of the latissimus dorsi musculocutaneous flap can be changed and the flap can be used for various purposes with the delay procedures

    Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion

    Get PDF
    Today, the biomechanical fundamentals of skin expansion are based on viscoelastic models of the skin. Although many studies have been conducted in vitro, analyses performed in vivo are rare. Here, we present in vivo measurements of the expansion at the skin surface as well as measurement of the corresponding intracutaneous oxygen partial pressure. In our study the average skin stretching was 24%, with a standard deviation of 11%, excluding age or gender dependency. The measurement of intracutaneous oxygen partial pressure produced strong inter-individual fluctuations, including initial values at the beginning of the measurement, as well as varying individual patient reactions to expansion of the skin. Taken together, we propose that even large defect wounds can be closed successfully using the mass displacement caused by expansion especially in areas where soft, voluminous tissue layers are present

    Chronic Respiratory Aeroallergen Exposure in Mice Induces Epithelial-Mesenchymal Transition in the Large Airways

    Get PDF
    Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM) extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1) levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (ι-SMA) and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease
    • …
    corecore