729 research outputs found

    Oral health of Hong Kong children: a historical and epidemiological perspective

    Get PDF
    published_or_final_versio

    In situ reconstruction of long-term extreme flooding magnitudes and frequencies based on geological archives

    Full text link
    © 2019 Extreme flooding magnitudes and frequencies are essentially related to assessment of risk and reliability in hydrological design. Extreme flooding and its discharge are highly sensitive to regional climate change. Presently, its discharge can be reconstructed by a geological archive or record along the river valley. Two units of typical extreme flooding deposits (EFDs) carrying long-term information preserved in the Holocene loess–palaeosol sequence were found at Xipocun (XPC), which is located in Chengcheng County, China. It is situated in the downstream section of the Beiluohe (hereafter BLH) River. Based on multiple sedimentary proxy indices (grain-size distribution (GSD), magnetic susceptibility (MS), and loss-on-ignition (LOI), etc.), EFDs were interpreted as well-sorted clayey silt in suspension. They were then deposited as a result of riverbank flooding in a stagnant environment during high water level. Through the Optically Stimulated Luminescence (OSL) dating technique and stratigraphic correlations, chronologies of two identified extreme flooding periods were 7600–7400 a B.P. and 3200–3000 a B.P. Two phases of extreme flooding occurrence under climate abnormality scenarios were characterized as having high frequencies of hydrological extremes in river systems. According to simulation and verification using the Slope–Area Method and Hydrologic Engineering Center's River Analysis System (HEC-RAS) model, the extreme flooding discharges at the XPC site were reconstructed between 9625 m 3 /s and 16,635 m 3 /s. A new long-term flooding frequency and peak discharge curve, involved gauged flooding, historical flooding at Zhuangtou station and in situ reconstructed extreme flooding events, was established for the downstream BLH River. The results improve the accuracy of low-frequency flooding risk assessment and provide evidence for predicting the response of fluvial systems to climate instability. Thus, this improves the analysis of the BLH River watershed

    Validity and reliability of the Chinese critical thinking disposition inventory

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    From error bounds to the complexity of first-order descent methods for convex functions

    Get PDF
    This paper shows that error bounds can be used as effective tools for deriving complexity results for first-order descent methods in convex minimization. In a first stage, this objective led us to revisit the interplay between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can show the equivalence between the two concepts for convex functions having a moderately flat profile near the set of minimizers (as those of functions with H\"olderian growth). A counterexample shows that the equivalence is no longer true for extremely flat functions. This fact reveals the relevance of an approach based on KL inequality. In a second stage, we show how KL inequalities can in turn be employed to compute new complexity bounds for a wealth of descent methods for convex problems. Our approach is completely original and makes use of a one-dimensional worst-case proximal sequence in the spirit of the famous majorant method of Kantorovich. Our result applies to a very simple abstract scheme that covers a wide class of descent methods. As a byproduct of our study, we also provide new results for the globalization of KL inequalities in the convex framework. Our main results inaugurate a simple methodology: derive an error bound, compute the desingularizing function whenever possible, identify essential constants in the descent method and finally compute the complexity using the one-dimensional worst case proximal sequence. Our method is illustrated through projection methods for feasibility problems, and through the famous iterative shrinkage thresholding algorithm (ISTA), for which we show that the complexity bound is of the form O(qk)O(q^{k}) where the constituents of the bound only depend on error bound constants obtained for an arbitrary least squares objective with 1\ell^1 regularization

    21-Hydroxylase Genotyping in Australasian Patients with Congenital Adrenal Hyperplasia

    Get PDF
    Mutations in CYP21 (21-hydroxylase) lead to congenital adrenal hyperplasia (CAH). We genotyped 26 probands with CAH by PCR-sequencing the entire CYP21 gene. 25/26 had homozygous or compound heterozygous mutations. The frequencies of mutations were similar to other populations with deletion/hybrid, 12 G splice and 1172N the most common. Five patients with a 1172N allele predicting simple-virilising CAH had a salt-wasting phenotype. Two other probands also had a more severe phenotype than predicted by genotype. Two families had both non-classic and salt-wasting phenotypes arising from combinations of three deleterious alleles. Two novel CYP21 alleles were detected: D106N and a large deletion encompassing CYP21 and adjacent pseudogene. Two rare CYP21 alleles were also found. Three of these four novel/rare alleles were only detected as a result of sequencing the entire CYP21 gene. Entire CYP21 sequencing will increase the number of mutations detected in CAH, and in combination with functional studies should contribute a greater understanding of phenotype-genotype correlations.

    Oral health and breastfeeding promotion program for pregnant women

    Get PDF
    The aim of this project was to promote the awareness and knowledge of pregnant women and infant oral health as well as the oral benefits of breastfeeding through a multi-disciplinary approach. This pilot oral health promotion program was developed to promote oral health knowledge related to the common dental problems among pregnant women and infants, and the oral health advantages of breastfeeding for infants. The program was conducted twice during March to April 2016 at the Queen Elizabeth Hospital. It consisted of a 15-minute PowerPoint presentation and a 15-minute small-group interactive workshop on Oral Hygiene Instructions. Evaluation forms were used to collect the feedbacks of the participants. The feedbacks for both the PowerPoint presentation and the interactive workshop were positive. Over 70% of the participants found that the contents were well-presented and the dental students were able to answer their questions. Furthermore, the participants agreed that the stated objectives of the program were met and the content of the program could be applicable in the coming future. Over 80% of the participants expressed that they understood the oral health advantages of breastfeeding after this program. To conclude, this program can effectively promote the key oral health messages about the common oral health problems of pregnant women and infants as well as the oral health advantages of breastfeeding. Also, this program can be effectively incorporated into the existing ante-natal classes. Further research can be performed to quantify the effectiveness by comparing the dental knowledge of pregnant women before and after this program. Further cooperation with a wider range of organizations, such as midwifery and nursing schools should also be explored.published_or_final_versio

    Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins

    Get PDF
    Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa(-1) in the range of < 1 kPa, 90,657 kPa(-1) in the range of 1-10 kPa, and 30,214 kPa(-1) in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins

    Site selection of the Colombian antarctic research station based on fuzzy-topsis algorithm

    Get PDF
    By 2025 the Republic of Colombia aims to be an advisory member of the Antarctic Treaty System (ATS) and the installation of a scientific station is necessary to upscale the scientific capabilities. The aim of this paper is showing the results of the implementation of a Fuzzy TOPSIS algorithm for site selection of the Colombian Antarctic Scientific Station. A three-phase methodology was AQ1 proposed, and the obtained results allowed to identify the optimum location for the station, considering key success factors and regulatory constraints
    corecore